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Field ionization measurements of CH3I and C2H5I dopant high-n molecular Rydberg states in
argon and krypton perturbers are presented as a function of perturber number density along various
isotherms up to the density of the triple point liquid. Using these data, a new local Wigner-
Seitz model for the density dependent energy V0(ρP) of a quasi-free electron in argon and krypton
is developed. This model, which contains only one adjustable parameter, uses a local Wigner-
Seitz radius derived from the local number density rather than from the bulk number density,
includes a statistical mechanical calculation of both the ion/medium polarization energy and the
electron/medium polarization energy, and includes the thermal kinetic energy of the quasi-free
electron. Using this model, V0(ρP) and the perturber-induced energy shift of the dopant ionization
potential ∆D(ρP) are calculated to within ±0.1% of experiment. Previously reported V0(ρP) data
for xenon are also shown to be interpretable within this new model.

PACS numbers: 33.15.Ry,34.30.+h,31.70.-f,31.70.Dk

I. INTRODUCTION

The study of the density dependent behavior of a
free electron in gases and liquids is important in many
areas of chemistry, including the investigation of elec-
tron/perturber interactions in disordered systems. For
example, since the electron mobility in a solvent (per-
turber P) is directly related to the energy minimum of
a free electron V0(ρP) in the solvent of number density
ρP [1–11], one can use V0(ρP) to study electron mobility
effects of perturber parameters (e.g., molecular shape,
strength of interaction, etc.). Electron mobility, in turn,
can influence the kinetics of chemical reactions [12, 13],
especially electrochemical reactions. Thus, the ability
to model V0(ρP) accurately has applications in the op-
timization of the choice of solvents and thermodynamic
conditions for chemical reactions.

At low perturber number density, a perturber atom
or molecule acts on a dopant Rydberg state by shifting
the Rydberg state energy and by broadening the transi-
tion lineshape as a result of collisional interactions. The
perturber induced shift of high-n Rydberg states can be
explained within a simple model [14]. This model as-
sumes that, due to the large size of the Rydberg state,
the perturbers interact separately with the Rydberg elec-
tron and with the ionic core. Within this assumption,
the shift of high-n Rydberg states, or of the dopant ion-
ization energy, arises from two independent phenomena,
namely the scattering of the Rydberg electron off of the
perturber and the polarization of the perturber due to
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the ionic core. In other words [14],

∆D(ρP) = ∆sc(ρP) + ∆pol(ρP), (1)

where ∆D(ρP) is the total shift in dopant ionization energy
(i.e., ∆D(ρP) = I(ρP) − Ig, where I(ρP) is the the per-
turbed dopant ionization energy and Ig is the gas phase
ionization energy of the dopant), ∆sc(ρP) is the “scatter-
ing” shift, ∆pol(ρP) is the “polarization” shift, and ρP is
the perturber number density.

For large n, the optical electron is loosely bound and
can therefore be assumed to be nearly free. Moreover,
near threshold the kinetic energy of the electron is ap-
proximately zero, so the scattering of the Rydberg elec-
tron by a perturber can be taken to be predominantly
s-wave. In this case, ∆sc(ρP) is given by [14],

∆sc(ρP) =
2 π ~2

m
A ρP (2)

where m is the electron mass, A is the electron scatter-
ing length in the perturber medium (which may be either
positive or negative depending on the nature of the per-
turber), and ~ is the reduced Planck constant. The shift
due to the polarization of the perturbing molecules by
the ionic core can be determined using [15–20]

∆pol(ρP) = −10.78
(

1
2

αP e2

)2/3

(~ v)1/3 ρP . (3)

In this equation, αP is the perturber polarizability, e is
the electron charge, and v is the relative thermal ve-
locity of the dopant and perturber molecules. Since
∆pol(ρP) can be calculated and ∆D(ρP) obtained exper-
imentally, Eq. (1) has been used to determine the zero-
kinetic-energy electron scattering length of various per-
turber atoms and molecules [17–21], including several
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fluorinated hydrocarbons [21]. Low-to-medium number
density studies have also yielded insights into cluster for-
mation [21]. However, the dopant/perturber interaction
mechanisms developed in low density studies do not ex-
tend into the high density regime [11, 16, 17, 22–24].

As ρP increases, Eq. (1) goes over smoothly to

∆D(ρP) = V0(ρP) + P+(ρP), (4)

where ∆D(ρP) again is the total shift in dopant ioniza-
tion energy, V0(ρP) is the quasi-free electron energy in the
host medium (i.e., the energy of the bottom of the con-
duction band of the perturber), and P+(ρP) is the average
ion/medium polarization energy. Unfortunately, high-n
Rydberg states in such high density systems cannot be
investigated using absorption spectroscopy or standard
photoionization spectroscopy because of pressure broad-
ening of the bound and autoionizing Rydberg states.
With this limitation in mind, several groups have inves-
tigated very dense media using photoconductivity tech-
niques [3–5, 11, 24–30]. Most recently, Reininger, et al.
[11, 23, 24, 31–38] have exploited field ionization of high-
n dopant Rydberg states as a method for determining
the quasi-free electron energy V0(ρP) in various atomic
perturbers.

In this paper, we first outline previous experimental
techniques used to obtain V0(ρP) from Eq. (4). We then
discuss the original Wigner-Seitz model for V0(ρP) and
give a brief history of subsequent modifications to this
model. After discussing the experimental methods em-
ployed by us, we present new field ionization data for
CH3I and C2H5I in dense Ar and Kr, and we provide
a statistical mechanical model to calculate P+(ρP) in
Eq. (4) in order to determine V0(ρP) experimentally. Fi-
nally, we introduce a new local Wigner-Seitz theory that
accurately models V0(ρP) over the entire density range
and allows one to calculate ∆D(ρP) to within ±0.1% of
experiment. Finally, the results of this new theory are
further tested by comparing known experimental mea-
surements of V0(ρP) in Xe with our model calculations.

II. EXPERIMENTAL DETERMINATION OF V0

The direct approach to obtaining V0(ρP) involves pho-
toinjecting an electron from a metal into a dense per-
turber. Since V0(ρP) is the energy required to take an
electron from a vacuum into the bulk fluid, the differ-
ence between the work function of the metal in a vacuum
and in the fluid corresponds directly to V0(ρP). Thus, if
the photoemission spectrum of a metal is measured in
a vacuum and separately in the fluid, the difference in
the threshold region can be used to determine V0(ρP).
In Fig. 1, photoinjection data for Ar [6, 11, 24] and Kr
[3, 11, 24] are shown. One clearly sees that there is con-
siderable experimental scatter. Furthermore, the fitted
curves through the experimental points do not extrapo-
late to zero energy in the absence of a perturber (i.e., in a
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FIG. 1: V0(ρP) obtained from various photoinjection measure-
ments, plotted as a function of perturber number density ρP.
(a) P = Ar; (◦) [6, 11, 24], (¤) [6, 11, 24], (M) [11, 24], and
(O) [11, 24]. (b) P = Kr; (•) [3, 11, 24], (¥) [3, 11, 24], and
(N) [11, 24, 30]. Lines provide a visual aid.

vacuum). This problem results from the formation of ox-
ide layers on the metal surface. These oxide layers form a
barrier through which a photoemitted electron must tun-
nel. Thus, the photoinjection energy of the oxide contam-
inated metal electrode is non-zero in the vacuum. A sec-
ond problem is that the perturber interacts with the sur-
face of the electrode and, thereby, changes the electronic
structure of the electrode. This perturber/electrode in-
teraction is dependent upon the surface area and rough-
ness of the electrode, the type of metal, the nature of
the perturber and the number density of the perturber.
Thus, modeling the perturber/electrode interaction is
difficult, which makes the accurate correction of photoin-
jection data essentially impossible.

Since directly determining V0(ρP) using photoinjec-
tion is interpretationally problematic, Reininger and co-
workers [11, 23, 24, 31–38] developed an indirect method
to obtain V0(ρP) experimentally. This method uses the
relationship in Eq. (4) to extract V0(ρP) once one de-
termines ∆D(ρP) experimentally and calculates P+(ρP).
Studies of atomic Rydberg states in the presence of a
static electric field [39] show that high-n Rydberg states
ionize at an electric field FCL equal to 1/(16n4), or
that the change in the ionization energy is given by
I = −2F 1/2

CL (in atomic units). This process is referred
to as classical field ionization. In the field ionization of
molecular Rydberg states, vibrational and rotational ef-
fects must be taken into consideration, and these effects
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lead to the classical field ionization limit being written
as [24, 39]

∆I = −c0F
1/2
CL , (5)

where c0 is a constant. A field ionization spectrum of
a dopant in a dense medium is obtained by subtracting
a photoionization spectrum measured at a low field FL

from a spectrum measured at a high field FH after in-
tensity normalization (necessary to remove the effects of
secondary ionization [24]). The field ionization spectrum
results from high-n Rydberg states that are field ionized
by FH but not FL. Variation in the strength of FH leads
to a shift in the energetic position of the field ioniza-
tion peak. By plotting this shift as a function of the
square root of the electric field, one can extrapolate the
zero-field energy position of the ionization energy I0(ρP)
using Eq. (5). Similarly, one can also correct for FL by
holding FH constant and varying FL. Thus, ∆D(ρP) in
Eq. (4) is obtained from

∆D(ρP) = I0(ρP)− Ig (6)

with I0(ρP) being determined experimentally from

I0(ρP) = IF(ρP) + c0

( √
FL +

√
FH

)
(7)

where IF(ρP) is the dopant ionization energy perturbed
by the electric field and by the dense gas. Therefore, if
one can calculate P+(ρP), one can determine V0(ρP) for
a given perturber number density using Eqs. (4),(6) and
(7).

The density dependent average polarization energy
P+(ρP) depends upon the position ri of each of the N
perturbers relative to the dopant at the moment of exci-
tation. Reininger, et al. [11, 24, 31–38] used a potential
of the form

w+(r1, . . . , rN) = −1
2

αP e2
N∑

i

r−4
i f+(ri) , (8)

where f+(r) is a screening function that incorporates the
repulsive interactions between the induced dipoles in the
perturber medium. The screening function chosen was
[24, 31–38, 40]

f+(r) = 1− αP π ρP

∫ ∞

0

1
s2

gPP(s) ds

×
∫ r+s

|r−s|

1
t2

f+(t) gPD(t) θ(r, s, t) dt ,

(9)

where

θ(r, s, t) =
3

2s2
(s2 + t2 − r2)(s2 − t2 + r2)

+(r2 + t2 − s2),
(10)

and where the integration variables s and t represent
the distance between the atom of interest and all other

perturber atoms. In Eq. (9), gPP(r) and gPD(r) are the
perturber/perturber and perturber/dopant radial distri-
bution functions, respectively, where gPD(r) reflects the
distribution of perturber atoms around the ground state
dopant molecule. Using a canonical distribution, the
probability of sampling a particular polarization energy
W , then, is given by [24, 31–38]

P (W ) =
∫
· · ·

∫
δ(W − w+(r1, . . . , rN))

× e−βU(r1,...,rN )
∏

i

dri

/ ∫
· · ·

∫
e−βU(r1,...,rN )

∏

i

dri

(11)

where β = 1/(kB T ) (kB ≡ Boltzmann constant) and
U(r1, . . . , rN ) is the multidimensional potential energy
of the system prior to ionization. Assuming two-body
spherically symmetric interactions, U(r1, . . . , rN ) can be
approximated by a sum of intermolecular pair potentials,
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FIG. 2: Example perturber/dopant and perturber/perturber
radial distribution functions gPD(r) and gPP(r), respectively,
calculated using Eqs. (14)-(16), plotted as a function of dis-
tance from the central atom r. The exact RDF functions
are C2H5I/Ar and Ar/Ar at an Ar number density ρAr =
8.00 × 1021 cm−3. The Lennard-Jones parameters used are
σPP = 3.409 Å, εPP/kB = 119.5 K, σPD = 4.394 Å, and
εPP/kB = 138.1 K. See text for discussion.
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or

U(r1, . . . , rN) =
N∑

i=1

UPD(ri) +
N∑

i,j=1
i<j

UPP(| ri − rj|) , (12)

where UPD(r) and UPP(r) are, respectively, the per-
turber/dopant and perturber/perturber intermolecular
potentials. Reininger, et al. [24, 31–38] assumed
Lennard-Jones 6-12 potentials for both UPD(r) and
UPP(r) for all of the dopant/perturber systems studied.
A moment analysis of the Fourier transform of Eq. (11)
yields the first moment [24, 31–38, 41, 42]

m1 = −4πρP

∫ ∞

0

gPD(r) w+(r) r2 dr (13)

after some (tedious) algebra. This moment represents the
shift in the dopant ionization energy resulting from the
average polarization of the perturber by the ionic core at

the moment of excitation; or in other words, P+(ρP) ≡
m1(ρP).

Obviously, Eqs. (8)-(13) depend on the method used
to calculate gPP(r) and gPD(r). For their calculations,
Reininger, et al. [24, 31–38] chose a coupled homoge-
neous Percus-Yevick model [43]:

gPD(r) = r−1 e−βUPD(r) YPD(r)

gPP(r) = r−1 e−βUPP(r) YPP(r)
(14)

where

YPD(r) =
∫ r

0

dt
dYPD(t)

dt
,

YPP(r) =
∫ r

0

dt
dYPP(t)

dt
,

(15)

with

d

dr
YPD(r) = 1 + 2πρP

∫ ∞

0

dt
(
e−βUPD(t) − 1

)
YPD(t)

×
[
e−βUPP(r+t) YPP(r + t)− r − t

|r − t| e−βUPP(|r−t|) YPP(|r − t|)− 2t

]

d

dr
YPP(r) = 1 + 2πρP

∫ ∞

0

dt
(
e−βUPP(t) − 1

)
YPP(t)

×
[
e−βUPP(r+t) YPP(r + t)− r − t

|r − t| e−βUPP(|r−t|) YPP(|r − t|)− 2t

]

(16)

Eqs. (14)-(16) are only valid when ρD ¿ ρP. (Examples
of the perturber/dopant and perturber/perturber radial
distribution functions gPP(r) and gPD(r) determined from
Eqs. (14)-(16) using a Lennard-Jones 6-12 potential for
C2H5I in Ar are shown in Fig. 2.)

Reininger, et al. [24, 31–38] were able to obtain V0(ρP)
from Eq. (4) using the experimental data for ∆D(ρP),
and P+(ρP) from Eq. (13). The results (cf. Fig. 3) were
consonant with those obtained from photoinjection mea-
surements (cf. Fig. 1). Thus, field ionization can be used
to determine V0(ρP) experimentally without the compli-
cations present in photoinjection experiments. This per-
mits one to test various theoretical calculations of V0(ρP)
for accuracy across the entire density range.

III. THEORETICAL CALCULATION OF V0

The first model of the behavior of V0 started from the
solution to the one-electron Schrödinger equation [44]

[
− ~2

2 m
∇2 + V (r)− E

]
ψ = 0 , (17)

where V (r) is the one-electron potential exerted by the
unperturbed fluid and E is the energy of the system. Un-
like solids, where the symmetry of the potential is deter-
mined by the lattice structure, liquids have only an aver-
age symmetry. Therefore, most models assume that the
potential is spherically symmetric about the perturber,
and that the potential (neglecting fluctuations) has an
average translational symmetry [7, 8, 10, 11, 24, 44–51]

V (r) = V (r + 2 rs) , (18)

where rs is the Wigner-Seitz (WS) radius [44, 52, 53]

rs = 3

√
3

4 π ρP

. (19)

The requirement that the first derivative of the wave-
function be continuous at the WS boundary leads to
[7, 8, 10, 11, 24, 44–51]

(
∂ψ0

∂r

) ∣∣∣∣
r=rs

= 0 . (20)
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FIG. 3: V0(ρP) obtained from various field ionization mea-
surements of dopant Rydberg states, plotted as a function of
perturber number density ρP. (a) P = Ar; (◦) D = CH3I
and (¤) D = H2S. (b) P = Kr; (•) D = CH3I and (¥)
D = (CH3)2S. All data are taken from [11, 24]. (—) rep-
resents a fit to experiment using V0(ρP) = a0 + a1(ρP −
a2) + (a3/a4) ln(cosh(a4(ρP − a2))) [1, 6]. For (a) P =
Ar [24], a0 = −0.262 eV, a1 = 0.0180 × 10−21 eV cm3,
a2 = 16.4 × 1021 cm−3, a3 = 0.0905 × 10−21 eV cm3, and
a4 = 0.0510 × 10−21 cm3. For (b) P = Kr [24], a0 = −0.521
eV, a1 = 0.0414 × 10−21 eV cm3, a2 = 19.3 × 1021 cm−3,
a3 = 0.166× 10−21 eV cm3, and a4 = 0.0480× 10−21 cm3.

Thus, V0 is obtained by solving

[
− ~2

2 m
∇2 + V (r)

]
ψ0 ≡ V0 ψ0 (21)

under the boundary condition of Eq. (20). In the original
model presented by Springett, Jortner and Cohen (SJC)
[44], the potential V (r) was divided into two parts: Vin,
the potential due to the perturber inside the WS sphere,
and Vout, the contribution of all of the perturbers outside
the sphere. Vout was approximated by its value in the
center of the WS sphere, or [44]

Vout = −3 αP e2

2 r4
s

(
1 +

8
3

π αP ρP

)−1

. (22)

Vin was defined as the sum of an attractive polarization
potential Vp and a repulsive atomic pseudopotential Va.
To evaluate Vp, the authors assumed that the electron
distribution is uniform in the region rs/2 ≤ r ≤ rs, which

led to [44]

Vp(r) =
∫ rs

rs/2

−αP e2

2 r4
d3r

/∫ rs

rs/2

d3r = −12 αP e2

7 r4
s

,

(23)
where the term −αPe2/2r4 is the electron-induced dipole
polarization potential. Eq. (23) tends to underestimate
the effect of Vp(r) at low density and overestimates the
effect at high density. However, this approximation does
allow one to obtain an analytical solution for Eq. (21).
The potential V (r) in Eq. (21) can now be written [44]

V (r) = Va(r) + Up(ρP) , (24)

where Up(ρP) is a constant defined by

Up(ρP) = −3 αP e2

2 r4
s

(
8
7

+
(

1 +
8
3

π αP ρP

)−1
)

. (25)

By defining Va(r) as a simple hard core potential (i.e.,
Va(r) = 0 for r > rh and Va(r) = ∞ for r < rh, where rh
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FIG. 4: Various V0(ρ) calculations [24, 44] plotted as a func-
tion of perturber number density ρP. (a) P = Ar. (b) P =
Kr. (—–) is a nonlinear least squares fit to the experimental
data of Fig. 3 using an empirical function for V0(ρP) from [1].
(· · · · · · ), V0(ρP) calculated using Eq. (30) with rh = A (i.e.,
A = - 0.82 Å for Ar and A = -1.60 Å for Kr). (- - - -), V0(ρP)
calculated using Eq. (30) with rh adjusted to provide the best
possible fit to experiment (i.e., rh = 0.91 Å for Ar and rh =
1.04 Å for Kr).
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is the hard core radius), Eq. (21) becomes [44]
[
− ~2

2 m
∇2 + Up(ρP)

]
ψ0 = V0(ρP) ψ0 ,

rh < r < rs ,

(26)

with the boundary conditions

ψ0(rh) = 0 ,

(
∂ψ0

∂r

) ∣∣∣∣
r=rs

= 0 . (27)

Under these boundary conditions, Eq. (26) has the simple
solution

ψ0 =
1
r

sin k0(r − rh) , (28)

where

tan k0(rs − rh) = k0rs . (29)

The value of V0(ρP), therefore, is given by [44]

V0(ρP) = Ek(ρP) + Up(ρP) , Ek(ρP) =
(~k0)2

2m
. (30)

However, while the formalism in Eqs. (17)-(30) is easily
computed, the comparison with experiment is not good,
as is shown in Fig. 4.

Other calculations of V0(ρP) involving the Wigner-
Seitz sphere differ only in the choice of potential (i.e.,
Eq. (24)). For instance, Plenkiewicz, et al. [45–50, 57]
used an atomic pseudopotential which more successfully
reproduced the low energy electron-atom scattering data
in the gas phase, but underestimated V0(ρP) for high den-
sity atomic fluids. However, the calculated values differed
from the experimental values by a minimum of 0.05 eV.
Iakubov, et al. [9, 58] also modified the SJC model by
changing the pseudopotential. Their pseudopotential was
based on known atomic parameters and the radial distri-
bution function in the liquid. These calculations tended
to overestimate V0(ρP) by 0.1 to 0.5 eV, representing an
error of around 30%. Stampfli and Bennemann [52] im-
proved the SJC model by avoiding the approximation
used to calculate the central atom polarization poten-
tial (i.e., eq. (25)). Their calculations also allowed the
hard core radius of the repulsive pseudopotential Va to
be an adjustable parameter. However, since Up(ρP) is
no longer a constant, Eq. (26) can only be solved nu-
merically in their model. Moreover, this model under-
estimates V0(ρP) by a minimum of 0.01 eV (or 3%) for
most of the density range. In the last several years, other
theoretical techniques [54–56, 59–62] such as path inte-
gral molecular dynamics (PIMD) [55, 56, 59], diffusion
Monte Carlo (DMC) methods [62], the block Lanczos di-
agonalization (BLD) method [62] and quantum molecu-
lar dynamics (QMD) [62], and a random phase approxi-
mation within multiple-scattering theory [54] have been
employed for the evaluation of V0(ρP) in rare gas fluids.
These methods all tend to have minimum errors within
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FIG. 5: Comparison of the experimentally determined con-
duction band energy V0(ρP) plotted as a function of perturber
number density ρP, represented by (——), to various calcu-
lated values. (a) P = Ar and (b) P = Kr. (—--) is a nonlinear
least squares analysis to the experimental data of Fig. 3 using
an empirical function for V0(ρP) from [1]. (· · · · · · ) is calcu-
lated using more accurate pseudopotentials [49, 50]. (−−−)
is obtained by assuming that Up(ρP) is nonconstant and rh

is adjustable [51]. (− · − · −) is determined using a random
phase approximation within multiple scattering theory [54].
(•) and (N) are calculated using quantum molecular dynam-
ics [55], and (¥) is determined using path integral molecular
dynamics [56]. See text for discussion. This figure is adapted
from [24].

±5 − 10 % of experiment. In general, the WS models
are superior to other methods in terms of accuracy and
simplicity. Fig. 5 compares some of the V0 calculation
procedures for Ar and Kr with the experimental data
and clearly illustrates that none of the current theoreti-
cal methods work across the entire density range.

IV. EXPERIMENTAL PROCEDURES

Photoionization spectra were measured with
monochromatized synchrotron radiation [21] having
a resolution of 0.9 Å, or 8 meV, in the spectral region
of interest. This radiation entered a copper experimen-
tal cell [21], equipped with entrance and exit MgF2

windows, that is capable of withstanding pressures of
up to 100 bar. This cell, which possesses two parallel
plate electrodes (stainless steel, 3 mm spacing) aligned
perpendicular to the windows, was connected to an open
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flow cryostat and resistive heater system allowing the
temperature to be controlled to within ± 0.5 K. The
light path within the cell is 1.0 cm. The intensity of the
synchrotron radiation exiting the monochromator was
monitored by measuring the current across a Ni mesh
intercepting the beam prior to the experimental cell. All
photoionization spectra are normalized to this current.

The low field FL and high field FH necessary to ob-
tain the best field ionization spectra are system depen-
dent and were determined by measuring field ionization
spectra at various low fields and high fields for multiple
perturber number densities. All data are energetically
corrected for the effects of both the low field and high
field using Eq. (7) with c0 = 4.3 ± 0.1 × 10−4 eV cm1/2

V−1/2 for CH3I and c0 = 3.0 ± 0.5 × 10−4 eV cm1/2

V−1/2 for C2H5I. The energy uncertainty due to the low
and high field correction was obtained by measuring the
field ionization spectra of pure CH3I and C2H5I at dif-
ferent low and high fields and was determined to be ±
5 meV and ± 6 meV, respectively, for CH3I and C2H5I.
The energy of a field ionization peak was found using a
non-linear least squares analysis with a gaussian fit func-
tion having a goodness of fit error determined within a
95% confidence level. The total error range for any ex-
perimental point, therefore, is given by a sum of the field
correction error, the goodness of fit error and the error
arising from the energy uncertainty due to the resolution
of the monochromator (i.e., ± 4 meV). This total error
averages to ± 0.015 eV for the measurements involving
CH3I and to ± 0.020 eV for the measurements involving
C2H5I.

CH3I (Aldrich, 99.45%), C2H5I (Sigma, 99.1%), argon
(Matheson Gas Products, 99.9999%) and krypton (Math-
eson Gas Products, 99.998%) were used without further
purification. Absorption spectra were measured for CH3I
(0.1 mbar) and C2H5I (0.5 mbar) to verify the absence
of impurities. Absorption spectra of argon and krypton
were measured at low number density and at high num-
ber density to check for the presence of trace impurities.
No trace impurities were observed in argon. In kryp-
ton, however, we observed a small xenon impurity (< 5
ppm from Matheson lot analysis). This impurity did not
effect the determination of field ionization spectra for ei-
ther dopant at any krypton number density. The number
densities of both argon and krypton were calculated from
the Strobridge equation of state [63] using a standard it-
erative technique. (The coefficients for the Strobridge
equation of state for argon and krypton were obtained
from Gosman, et al. [64] and from Streett and Stave-
ley [65], respectively.) The error in the number density
calculated using the Strobridge equation of state was esti-
mated to be ± 0.2% of the density over the entire density
range for both argon and krypton [64, 65].

Both the gas handling system and the procedures em-
ployed to ensure homogeneous mixing of the dopant
and perturber have been described previously [21]. The
base pressure in the gas handling system was in the
low 10−8 Torr range. In order to ensure no perturber

contamination by the dopant, the gas handling system
was allowed to return to the low 10−7 Torr range be-
fore the addition of the perturber. Cross contamina-
tion between dopant/pertuber systems was prevented by
baking the gas handling system until the pressure was
in the low 10−8 Torr range before introducing a new
dopant/perturber system.

V. RESULTS AND DISCUSSION

While experimental data exist for the energy of a quasi-
free electron V0(ρP) in Ar and Kr (cf. Figs. 1 and 3), we
chose to obtain new experimental data along isotherms
in order to evaluate temperature effects. Fig. 6 presents
the perturber induced shift of the dopant ionization en-
ergy ∆D,EXP(ρP) of CH3I (solid markers) and C2H5I (open
markers) in dense Ar and Kr plotted as a function of
perturber number density ρP. The data in Fig. 6a (i.e.,
P = Ar) were taken along the non-critical isotherms
−114.8± 0.6◦C and −117.6± 0.7◦C as well as at various
other non-critical temperatures for the higher densities
(since at T < Tc, the density does not vary much over the
pressure range of 0 - 80 bar along any given isotherm).
Similarly, the data in Fig. 6b were obtained along the
non-critical isotherms −57.1± 0.9◦C and −60.0± 0.5◦C
as well as at other temperatures for the higher densities.

In order to determine V0(ρP) experimentally from
Eq. (4), the average ion-perturber polarization energy
P+(ρP) must be obtained. We chose to calculate P+(ρP)
using Eqs. (8)-(13) with the radial distribution functions
determined from Eqs. (14)-(16) and the intermolecular
potentials given by [66]

Uij(r) = 4 εij

[(σij

r

)12

−
(σij

r

)6
]

− 1
r6

(
αi µ

2
j + αj µ2

i

)

+
µi µj

r3
[ sin θi sin θj cos(φi − φj)

−2 cos θi cos θj ] ,

(31)

where ij = PP and PD. In this general form of Eq. (31),
with indices omitted, ε and σ are the standard Lennard-
Jones 6-12 potential parameters, α is the polarizability
of the perturber or dopant, µ is the dipole moment of
the perturber or dopant, and θ and φ are the angles of
the perturber/perturber or perturber/dopant dipole mo-
ments oriented relative to local coordinates with coin-
cident z-axes. We chose Eq. (31) as the general inter-
molecular potential because of its applicability to a wide
variety of dopant/perturber systems. For the case of the
systems presented here, however, where the perturber is
a rare gas but the dopant is a polar molecule, Eq. (31)
simplifies to

UPP(r) = 4 εPP

[(σPP

r

)12

−
(σPP

r

)6
]

, (32)
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FIG. 6: The experimental perturber-induced shift of dopant
ionization energies ∆D,EXP(ρP) plotted as a function of per-
turber number density ρP. (a) P = Ar at (•, ◦) − 114.8◦C, at
(¥, ¤) − 117.6◦C and at (N, M) various other noncritical tem-
peratures. (b) P = Kr at (•, ◦) − 57.1◦C, at (¥, ¤) − 60.0◦C,
and at (N, M) various other noncritical temperatures. Solid
markers represent D = CH3I, and open markers represent D
= C2H5I. The lines are a nonlinear least squares fit to ex-
periment using a seventh-order polynomial function and are
provided as a visual aid. See text for discussion.

for the perturber/perturber interactions and

UPD(r) = 4εPD

[(σPD

r

)12

−
(σPD

r

)6
]
− 1

r6
αP µ2

D , (33)

for the dopant/perturber interactions. Eq. (33) can be
rearranged into standard Lennard-Jones form, namely

UPD(r) = 4 ε

[(σ

r

)12

−
(σ

r

)6
]

, (34)

where [66]

ε ≡ εPD

[
1 +

αP µ2
D

4 εPD σ6
PD

]2

,

σ ≡ σPD

[
1 +

αP µ2
D

4 εPD σ6
PD

]−1/6
(35)

In order to obtain εPD and σPD, we used the Sikora com-
bining rules [67] with εDD and σDD determined using the
critical point data [68, 69] for the various dopants. The
information necessary to obtain the intermolecular po-
tential parameters is given in Table I, and the exact in-
termolecular potential parameters used in all of the cal-
culations presented here are given in Table II.

TABLE I: Dopant and perturber thermodynamic information
used to obtain Lennard-Jones potentials and to calculate ra-
dial distribution functions. α is the polarizability in Å3, µ is
the dipole moment in Debye, Tc is the critical temperature,
and Pc is the critical pressure. All data are taken from CRC
Handbook of Chemistry and Physics, 84th ed., D. R. Lide,
ed. (CRC Press, 2004).

α (Å3) µ (D) Tc (K) Pc (bar)

Ar 1.6411 0 150.86 48.98

Kr 2.4844 0 209.46 55.20

CH3I 7.97 1.641 528 65.9

C2H5I 10.0 1.976 554 47.0

TABLE II: Lennard-Jones parameters used in the radial dis-
tribution function calculations (i.e., Eqs. (14)-(16) of text)
and average polarization energies (i.e., Eqs. (13) and (39) of
text).

σij (Å) εij/kB (K) σ (Å)a ε/kB (K)a

Ar-Ar 3.409 119.5

Kr-Kr 3.591 172.7

CH3I-CH3I 4.761 402.4

C2H5I-C2H5I 5.413 422.3

CH3I-Ar 4.081 158.8 4.074 162.2

C2H5I-Ar 4.402 135.1 4.394 139.1

CH3I-Kr 4.173 214.1 4.166 218.6

C2H5I-Kr 4.495 187.8 4.487 191.8

aFrom Eq. (35) of text.

The average ion-perturber polarization energies P+(ρP)
for CH3I and C2H5I in Ar and in Kr, calculated from
Eq. (13), are shown as a function of perturber number
density ρP in Figs. 7a (P = Ar) and 7b (P = Kr). Sub-
tracting P+(ρP) from ∆D(ρP) leads to the experimental
determination of V0(ρP), which is presented in Fig. 8 as
a function of ρP. Clearly, the experimentally determined
V0(ρP) in Fig. 8 is similar to that previously reported
from earlier field ionization measurements (cf. Fig. 3)
and from photoconduction measurements (cf. Fig. 1).
The small differences between the data of Fig. 3 and
those of Fig. 8 can be attributed to the change in the av-
erage ion-perturber polarization energies because of the
choice of intermolecular potentials. The experimentally
determined V0(ρP) also shows little to no temperature
dependence along non-critical isotherms. The behavior
along the critical isotherm around the critical point of
the perturber is more complex and will be discussed in
detail in later publications [70–72].

As explained in more detail below, our theoretical
treatment of V0(ρP) differs from the original SJC model in
several significant ways. First, the translational symme-
try for the system is defined by a local Wigner-Seitz ra-
dius determined from the perturber-perturber radial dis-
tribution function, not from the bulk Wigner-Seitz radius
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FIG. 7: The average ion/perturber polarization energy
P+(ρP), calculated from Eq. (13) using the parameters in Ta-
ble II, plotted as a function of perturber number density ρP.
(a) P = Ar at (•, ◦) − 114.8◦C, at (¥, ¤) − 117.6◦C and at
(N, M) various other noncritical temperatures. (b) P = Kr at
(•, ◦) − 57.1◦C, at (¥, ¤) − 60.0◦C, and at (N, M) various
other noncritical temperatures. Solid markers represent D =
CH3I, and open markers represent D = C2H5I. The lines are
a nonlinear least squares fit to experiment using a seventh-
order polynomial function and are provided as a visual aid.
See text for discussion.

(i.e., Eq. (19)). Second, the average electron-medium po-
larization is determined in a similar manner to the av-
erage ion-medium polarization shift (i.e., Eqs. (6)-(13)).
Third, since we have controlled the temperature to ±0.5
K, we include the thermal energy of the quasi-free elec-
tron (i.e., 3

2 kB T , which is greater that the experimental
error in these measurements). Finally, a phase shift pa-
rameter is added to reflect the scattering of the quasi-free
electron off of the rare gas atoms contained within the
solvent shell.

As is usual, our model begins with the one-electron
Schrödinger equation (cf. Eq. (17)). We also assume
that the potential is spherically symmetric about the
perturber and that the potential (neglecting fluctua-
tions) has an average translational symmetry. How-
ever, we do not assume that the average distance be-
tween atoms in a gas can be determined by dividing
the volume into spheres defined by the bulk number
density (cf. Eq. (19)). In dense gases, one does not
have a uniform distribution of perturbers because of per-
turber/perturber interactions. Thus, the translational
symmetry boundary condition must reflect this nonuni-

FIG. 8: V0(ρP), determined from Eq. (4) by subtract-
ing P+(ρP) in Fig. 7 from the experimentally deter-
mined perturber-induced shift of dopant ionization energies
∆D,EXP(ρP) in Fig. 6, plotted as a function of perturber
number density ρP. (a) P = Ar at (•, ◦) − 114.8◦C, at
(¥, ¤) − 117.6◦C and at (N, M) various other noncritical tem-
peratures. (b) P = Kr at (•, ◦) − 57.1◦C, at (¥, ¤) − 60.0◦C,
and at (N, M) various other noncritical temperatures. Solid
markers represent D = CH3I, and open markers represent D
= C2H5I. (—) is a nonlinear least squares fit to experiment
using V0(ρP) = a0+a1(ρP−a2)+(a3/a4) ln(cosh(a4(ρP−a2)))
[1, 6]. For (a) P = Ar, a0 = 0.0347 eV, a1 = 0.120 × 10−21

eV cm3, a2 = 22.9× 1021 cm−3, a3 = 0.151× 10−21 eV cm3,
and a4 = 0.141 × 10−21 cm3. For (b) P = Kr, a0 = 0.0561
eV, a1 = 0.192 × 10−21 eV cm3, a2 = 21.6 × 1021 cm−3,
a3 = 0.270× 10−21 eV cm3, and a4 = 0.106× 10−21 cm3.

formity. One way to meet this requirement is to ob-
tain the local number density from the radial distribution
function, since [73, 74]

ρP(r) = gPP(r)ρP , (36)

where ρP(r) is the local perturber number density and
ρP is the bulk perturber number density. In this case,
then, the translational symmetry is defined by a local
Wigner-Seitz radius

r` = 3

√
3

4 π gmax ρP

(37)

where gmax is the maximum of the radial distribution
function. Thus r` < rs, because the local density at
the first solvent sphere is larger than the bulk density.
The local Wigner-Seitz radius, therefore, represents one-
half the average spacing between rare gas atoms in the
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FIG. 9: The average electron/perturber polarization energy
P−ρP, calculated from Eq. (39) using the parameters in Ta-
ble II, plotted as a function of perturber number density ρP.
(a) P = Ar at (•, ◦) − 114.8◦C, at (¥, ¤) − 117.6◦C and at
(N, M) various other noncritical temperatures. (b) P = Kr at
(•, ◦) − 57.1◦C, at (¥, ¤) − 60.0◦C, and at (N, M) various
other noncritical temperatures. Solid markers represent D =
CH3I, and open markers represent D = C2H5I. The lines are
a nonlinear least squares fit to experiment using a seventh-
order polynomial function and are provided as a visual aid.
See text for discussion.

first solvent shell, with the translation symmetry of the
potential being given by

V (r) = V (r + 2r`) (38)

Like the SJC model [44], we assume that V (r) is divided
into two parts: an attractive electron/perturber polar-
ization energy P−(ρP), which is similar to Up(ρP) in the
SJC model (i.e., Eq. (25)), and a repulsive atomic pseu-
dopotential Va(r).

We calculate the attractive electron/perturber polar-
ization energy P−(ρP) in a manner similar to that of the
ion polarization potential P+(ρP) in Eqs. (8)-(13). The
interaction potential used is that originally proposed by
Lekner [40]:

w−(r1, . . . , rN) = −1
2

αP e2
N∑

i

r−4
i f−(ri) , (39)

where f−(r) is a screening function given by

f−(r) =1− αP π ρP

∫ ∞

0

1
s2

gPP(s) ds

×
∫ r+s

|r−s|

1
t2

f−(t) θ(r, s, t) dt ,

(40)

with θ(r, s, t) as defined in Eq. (10). The moment anal-
ysis of the probability distribution (i.e., Eq. (11)) yields
the first moment

m1 = −4πρP

∫ ∞

0

gPP(r) w−(r) r2 dr ≡ P−(ρP) , (41)

after some algebra. (Fig. 9 shows the calculated average
electron/perturber polarization energy P−(ρP) plotted as
a function of ρP for both Ar and Kr.) Thus, the potential
V (r) in Eq. (21) becomes

V (r) = Va(r) + P−(ρP) , (42)

where P−(ρP) is a constant for a fixed perturber num-
ber density. As in the SJC treatment, we define Va(r)
as a hard core potential (i.e., Va(r) = 0 for r > rh and
Va(r) = ∞ for r < rh, where rh is the hard core radius).
However, we set rh equal to the absolute value of the scat-
tering length A of the perturber. Thus, the one-electron
Schrödinger equation becomes

[
− ~2

2 m
∇2 + P−(ρP)

]
ψ0 = V0 ψ0 ,

|A| < r < r` ,

(43)

with the boundary conditions

ψ0(|A|) = 0 ,

(
∂ψ0

∂r

) ∣∣∣∣
r=r`

= 0 . (44)

Under these boundary conditions, Eq. (43) has the solu-
tion

ψ0 =
1
r

sin k0(r − |A|) , (45)

where

tan k0 (r` − |A|) = k0 r` . (46)

In Eq. (46), the phase shift due to s-wave scattering
from the hard core potential that represents the central
rare gas atom is −k0 |A| [75]. Outside the first solvent
shell, however, the quasi-free electron wavefunction can
also scatter off of the rare gas atoms contained within the
solvent shell, which introduces an additional phase shift.
Again for s-wave scattering, and in the limit of small k0,
this scattering phase shift is given by ηπ, where η is the
phase shift amplitude [76]. Incorporating this phase shift
into Eq. (46) yields

tan [ k0 (r` − |A|) + ηπ ] = k0 r` . (47)
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FIG. 10: V0(ρP), calculated from Eq. (48), plotted as a
function of perturber number density ρP. (a) P = Ar at
(•, ◦) − 114.8◦C, at (¥, ¤) − 117.6◦C and at (N, M) various
other noncritical temperatures. (b) P = Kr at (•, ◦) − 57.1◦C,
at (¥, ¤) − 60.0◦C, and at (N, M) various other noncritical
temperatures. Solid markers represent D = CH3I, and open
markers represent D = C2H5I. (—) is a nonlinear least squares
fit to the experimental data of Fig. 8 using an empirical func-
tion from [1]. The error shown is the difference between the
experimental V0(ρP) in Fig. 8 and the calculated values. The
horizontal dotted lines represent the experimental error lim-
its. See text for discussion.

In this model, η is an adjustable parameter for each per-
turber and is evaluated from the field ionization and/or
photoconduction data for V0(ρP). Once the thermal ki-
netic energy of the quasi-free electron is included, V0(ρP)
becomes

V0(ρP) = Ek(ρP) + P−(ρP) +
3
2

kB T ,

Ek =
(~ k0)2

2 m
,

(48)

where k0 is evaluated from Eq. (47).
Fig. 10a presents V0,CAL(ρP) for Ar obtained from

Eq. (48) with η = 0.40 and A = −0.82 Å [21], plotted as
a function of Ar number density ρAr. Similarly, Fig. 10b
presents V0,CAL(ρP) for Kr calculated with η = 0.48 and

FIG. 11: ∆D,CAL(ρP), calculated from Eq. (4) with P+(ρP)
from Fig. 7 and V0(ρP) = V0,CAL(ρP) from Fig. 10, plotted
as a function of perturber number density ρP. ρP. (a) P
= Ar at (•, ◦) − 114.8◦C, at (¥, ¤) − 117.6◦C and at
(N, M) various other noncritical temperatures. (b) P = Kr at
(•, ◦) − 57.1◦C, at (¥, ¤) − 60.0◦C, and at (N, M) vari-
ous other noncritical temperatures. Solid markers represent
D = CH3I, and open markers represent D = C2H5I. Lines are
nonlinear least squares fits of the experimental data in Fig. 6
using a seventh-order polynomial function and are provided
as a visual aid. The error shown is the difference between
the experimental ∆D,CAL(ρP) in Fig. 6 and the calculated val-
ues. The horizontal dotted lines represent the experimental
errorlimits. See text for discussion.

A = −1.60 Å [21], plotted as a function of krypton num-
ber density ρKr. The solid line in Fig. 10 is a nonlinear
least squares fit of the experimental data from Fig. 8 us-
ing an empirical function from [1]. The error shown at the
top of both Figs. 10a and 10b is the difference between
the experimentally determined V0(ρP) values (cf. Fig. 8)
and the values calculated from Eq. (48), represented by
the individual markers. The horizontal dotted lines de-
note the overall experimental error limits. Clearly, the
error between the calculated and experimental V0(ρP)
values falls within the intrinsic error of these measure-
ments. It is important to note that the only adjustable
parameter in this model is η, which is perturber depen-
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FIG. 12: V0(ρP) for Xe plotted as a function of xenon number
density Xe. (•) [3], (¥) [3], and (N) [11] are from photoinjec-
tion measurements. (H) is from Eq. (4) with ∆D,CAL(ρP) ob-
tained from the field ionization of (CH3)2S in Xe, and P+(ρP)
calculated using Eq. (13) [32]. (◦) is V0,CAL(ρP) for Xe deter-
mined from Eq. (48) with η = 0.50. (—) is a nonlinear least
squares fit to V0,CAL(ρP) using an empirical equation from [1]
and is provided as a visual aid.

dent. Finally, Fig. 11 shows the total perturber-induced
shift of dopant ionization energy ∆D(ρP) for both dopants
(CH3I and C2H5I) in both perturbers (Ar and Kr). The
solid (CH3I) and dashed (C2H5I) lines provide a nonlin-
ear least squares fit to the experimental data as a visual
aid, and the error between the calculated and experi-
mental values is provided at the top of both Figs. 11a
(Ar) and 11b (Kr). Again, the differences between the
experimental and calculated values fall well within the
experimental error limits.

Finally, as an additional test of the model leading to
Eq. (48), we have calculated V0(ρP) for Xe. The Lennard-
Jones parameters used in the radial distribution function
and polarization shift calculations are σXe−Xe = 4.10 Å
and εXe−Xe/kB = 221.0 K. Fig. 12 presents a collection
of published measurements (solid markers) of V0(ρP) for
Xe, plotted as a function of number density ρXe, and
compares these to our calculated values (open markers
and solid line) obtained from Eq. (48) with η = 0.50 and
A = −3.24 Å [21]. The model calculation clearly falls
within the scatter of the experimental points. However,
a more comprehensive Xe experimental data set is needed
to explore fully the accuracy of V0(ρP) calculated using
this new model.

The new local Wigner-Seitz model presented here pro-
vides V0(ρP) calculations to within ±0.1% of experiment
for Ar and Kr, and falls within the scatter of the experi-
mental points for Xe, with the use of only one adjustable
parameter. This represents an order of magnitude im-

provement in accuracy in comparison to previously pub-
lished V0(ρP) models.

VI. CONCLUSIONS

We have presented experimental data for V0(ρP) de-
termined from field ionization of dopant (CH3I and
C2H5I) Rydberg states in dense Ar and Kr, along select
isotherms that did not include the critical isotherm. We
have shown that there is little to no temperature depen-
dence in V0(ρP) along these non-critical isotherms. We
have developed a new local Wigner-Seitz model that con-
tains only one adjustable parameter and that allows one
to fit the experimental data to within ±0.1%. This new
model differs from the original SJC model by calculating
the polarization energy using a statistical mechanical ap-
proach, by using a local Wigner-Seitz radius based upon
the local number density instead of the bulk number den-
sity, by including the thermal energy of the electron, and
by introducing a phase shift to represent the scattering of
the quasi-free electron off of the rare gas atoms within the
solvent shell. While this model was developed for Ar and
Kr, we also showed that it reproduces the known V0(ρP)
data for Xe. Future papers will describe the behavior of
V0(ρP) along the critical isotherm near the critical den-
sity of Ar and Kr, as well as the application of the local
Wigner-Seitz model to these near-critical point systems
[70–72], and future work will focus on an extension of
these techniques to molecular perturbers and a system-
atic assessment of the perturber dependence of the phase
shift parameter η.
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