Results from Reaction Dynamics to Potential Surfaces, Kinetics and Spectroscopy

1. Dominant Role of Anions in Preignition

Anions are directly associated with IL hypergolicity and play a decisive role during the induction stage of ignition. DCA\(^{-}\) (i.e. N(CN)) \(^{-}\) and DCBH\(^{-}\) (i.e. H\(_{2}\)) are the two well-known choices based on their hypergolicity in propellant formulations and low viscosity. In the following, their oxidizability by nitric acid \(\Delta H(\text{reaction})\) and their contribution to preignition kinetics and dynamics of individual constituent ions and their combinations are explored.

- Formation of N=NHCOCONH=NO\(^{-}\) (DNB) is exclusively important in the preignition of DCA\(^{-}\).
- Oxidation of DCBH\(^{-}\) presents the same type of reactions that have occurred to DCA\(^{-}\), but these pathways are minor in DCBH\(^{-}\) preignition.

2. Participation of Cations in Preignition

Cations not only tune IL physicochemical properties but participate in preignition via intra-ion-pair reactions. The cation’s capability of proton transfer and alkyl abstraction by anion may significantly affect IL oxidizability.

- \(\Delta H(\text{reaction})\) of the reaction: 1.22 (0.81) for BMIM\(^{+}\) DCA\(^{-}\) vs. 1.01 (0.08) for HDCA\(^{+}\) DCA\(^{-}\) (0.86).
- \(\Delta R(\text{reaction})\) of the reaction: 1.56 (1.51) for BMIM\(^{+}\) DCA\(^{-}\) vs. 1.01 (0.08) for HDCA\(^{+}\) DCA\(^{-}\) (0.86).

3. Verification of Computational Results: Product Spectral Analysis

- The preignition of DCBH\(^{-}\) with HNO\(_{3}\), mostly results from the boron-hydride-specific reactions, of which the most important one is H\(_{2}\) elimination via the combination of a hydride in DCBH\(^{-}\) and a proton in HNO\(_{3}\).
- Kinetics analysis suggests that H\(_{2}\) elimination becomes overwhelmingly dominant in the HNO\(_{3}\) oxidation of DCBH\(^{-}\).
- The phenomenological rate constant of DCBH\(^{-}\) is an order of magnitude higher than that of DCA\(^{-}\).

4. Application of Reactive Molecular Dynamics

- Intra-Ion Pair Reactions of MAT\(^{+}\)DCA\(^{-}\):
 - Probability for PT: BMIM\(^{+}\) has 13 H (CH\(_{3}\)) and C2-H available for PT, followed by 9 in AMIM\(^{+}\) (CH\(_{3}\), CH\(_{2}\) and C2-H) and then 6 in MAT\(^{+}\) (NH\(_{3}\), CH\(_{3}\), and C2-H).
 - A unique PT in dialkyl-IM\(^{-}\)DCA\(^{-}\) is the concerted H\(^{+}\)-transfer and elimination of alkene, which is missing in MAT\(^{-}\)DCA\(^{-}\).
 - Dialkyl-IM\(^{-}\)DCA\(^{-}\) have exoergic S,\(_{2}\) alkyl abstraction, which releases heat to promote other reactions. The order of ion-pairing (eV) of MAT\(^{-}\)DCA\(^{-}\), dialkyl-IM\(^{-}\)DCA\(^{-}\)

5. Conclusions

- Dynamics and kinetics modeling has captured the distinctive preignition chemistry for ILs of various constituent ions.
- Key reactions of boron-hydride in preignition suggest the design of new ILs toward enhanced H\(_{2}\) elimination capability.
- The oxidation reactivity are in the order of BMIM\(^{+}\)DCA\(^{-}\) > AMIM\(^{+}\)DCA\(^{-}\) > MAT\(^{+}\)DCA\(^{-}\).

Acknowledgments

- This work was supported by the DoD, AFRL/RQRS, and National Aeronautics and Space Administration (NASA). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the AFRL or NASA.

References