Elucidating Potential Energy Surfaces for Singlet O$_2$ Reactions with Protonated, Deprotonated and Di-deprotonated Cystine Using A Combination of Approximately Spin Projected Density Functional Theory and Guided-Ion-Beam Mass Spectrometry

Wenchao Lu,ab I-Hsien (Midas) Tsai,c Yan Sun,ab Wenjing Zhou,a and Jianbo Liu*ab

aDepartment of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA

bPh.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA

cDepartment of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA

*Corresponding author. E-mail: jianbo.liu@qc.cuny.edu. Telephone: 1-718-997-3271.
Abstract: The reactivity of cystine towards electronically excited singlet O$_2$ ($\text{a}^1\Delta_g$) has been long debated, despite the fact that most organic disulfides are susceptible to oxidation by singlet O$_2$. We report a combined experimental and computational study on reactions of singlet O$_2$ with gas-phase cystine at different ionization and hydration states, aimed to determine reaction outcomes, mechanisms and potential energy surfaces. Ion-molecule collisions of protonated and di-deprotonated cystine ions with singlet O$_2$, in both the absence and the presence of a water ligand, were measured over a center-of-mass collision energy (E_{col}) range from 0.1 to 1.0 eV, using a guided-ion-beam scattering tandem mass spectrometer. No oxidation was observed for these reactant ions except collision-induced dissociation at high energies. Guided by density functional theory (DFT) calculated potential energy surfaces, reaction coordinates were established to unravel the origin of the non-reactivity of cystine ions towards singlet O$_2$. To account for mixed open- and closed-shell characters, singlet O$_2$ and critical structures along reaction coordinates were evaluated using broken-symmetry, open-shell DFT with spin contamination errors removed by an approximate spin projection method. It was found that collision of protonated cystine with singlet O$_2$ follows a repulsive potential surface, and possesses no chemically significant interaction; and collision-induced dissociation of protonated cystine is dominated by loss of water and CO. Collision of di-deprotonated cystine with singlet O$_2$, on the other hand, forms a short-lived electrostatically bonded precursor complex at low E_{col}. The latter may evolve to a covalently bonded persulfoxide, but the conversion is blocked by an activation barrier lying 0.39 eV above reactants. At high E_{col}, C-S bond cleavage dominates the collision-induced dissociation of di-deprotonated cystine, leading to charge-separated fragmentation. Cross section for the ensuing fragment ion $\text{H}_2\text{NCH(CO}_2\text{)}\text{CH}_2\text{SS}^-$ was measured as a function of E_{col}, and the mechanism for charge-separated fragmentation was discussed. It was also found that the reaction of deprotonated cystine with singlet O$_2$ follows a similar mechanism as that of di-deprotonated cystine, but with an even higher activation barrier (0.72 eV).
1. Introduction

The lowest electronically excited singlet \(\text{O}_2[\text{a}^1\Delta_g] \) can be produced in biological systems by energy transfer to ground-state \(\text{O}_2 \) from protein-bound or other chromophores on exposure to UV-Vis light (i.e. photosensitized oxidation).\(^1\) \(\text{O}_2 \) can also be generated by a range of endogenous enzymatic and chemical reactions.\(^2\) Oxidation of biomolecules by \(\text{O}_2 \) leads to protein misfunctionality, mutagenic alterations to DNA, lipid peroxidation, and membrane degradation.\(^2-4\) These oxidatively generated damages are involved in aging, mutation, carcinogenesis and cellular death, as well as in photodynamic therapy.\(^5\)

Reactions of \(\text{O}_2 \) are highly selective and specific to certain residues in biological systems. Of the 20 "standard" amino acids that make up proteins, tryptophan (Trp), histidine (His), tyrosine (Tyr), methionine (Met) and cysteine (Cys) are the five most susceptible to \(\text{O}_2 \) attack.\(^2\) Oxidation of the thiol group of Cys may create a disulfide linkage with another Cys,\(^6\) producing dimeric compound cystine (CySSCy). Disulfide bonds of cystine residues are responsible for the tertiary structures of polypeptides,\(^7\) and play a central role in stabilizing the correct, biologically active conformations of proteins against denaturation. Controlled oxidation of Cys and reduction of cystine act as a redox switch to control the structures and functions of a number of key proteins.\(^8\) In addition to biological milieu, cystine is one of the amino acids abundant in tropospheric particles and depositions.\(^9-10\) Questions have arisen as to whether cystine is vulnerable to further photodynamic oxidation in cells, and to \(\text{O}_2 \)-mediated photochemical transformations in the atmosphere.\(^11\)

Studies on photobleaching of wool keratin implied possible reactions involving cystine with \(\text{O}_2 \).\(^12\) However, many aspects of cystine oxidation (mechanism, products, kinetics, etc.) have not been well understood. It was suggested that cystine may react with \(\text{O}_2 \) in a manner similar to dialkyl sulfides and dialkyl disulfides,\(^13-14\) i.e., forms a zwitterion persulfoxide \(\text{CySS}^+\text{(OO)}\text{Cy} \), and the latter reacts with a second cystine to give rise to two molecules of \(\text{CySS}(=\text{O})\text{Cy} \).\(^15-16\) However, the photosensitized oxidation experiments of cystine led to disputing results.\(^16-17\) Murray and Jindal investigated methylene blue-sensitized photooxidation of cystine model compounds, 3,3-dithiobis(dipropionic acid), 3,3-dithiobis
(dipropionic acid diethylamide), and cystamine. Supplemented, Fliss and Viswanatha studied 2,3-butanedione-sensitized photooxidation of cystine. All these compounds were reported to be oxidized by $^{1}O_{2}$. In contradistinction to these observations, Weil reported that both cystine and S-S-glutathione were sluggish to photooxidation (although in a previous report Weil et al. reported that cystine was susceptible to methylene blue-sensitized photooxidation). The non-reactivity of cystine towards $^{1}O_{2}$ was also observed by Iori et al. using other sensitizers. It is not clear what might have been misinterpreted in the past studies. However, Type I (radical-mediated) and Type II ($^{1}O_{2}$-mediated) mechanisms may co-exist in photooxidation and simultaneously contributed to reactions. Solution experimental results were also coupled to many other factors, e.g., pH, solvent composition, type of sensitizer, etc. All these apparently complicated the interpretation of photooxidation outcomes.

We have recently investigated the $^{1}O_{2}$ oxidation of protonated/deprotonated Cys and Met in the gas phase, in both the absence and the presence of water ligands. Experiments were carried out on a guided-ion-beam mass spectrometer, where reactions were separated from bulk solution environments. $^{1}O_{2}$ was produced through the reaction of $H_{2}O_{2}$ and Cl_{2} in basic solution without forming radical byproducts. Gas-phase experiments avoided the complexities arising from conventional solution-phase photooxidation experiments, and eliminated the competition of $^{1}O_{2}$ oxidation with radical-mediated reactions. They have allowed us to distinguish intrinsic reactivities of amino acids towards $^{1}O_{2}$.

In the present work, we have extended gas-phase experiment to protonated/deprotonated cystine, aimed at directly measuring the reactivity of cystine with $^{1}O_{2}$. Experimental results were interpreted in light of density function theory (DFT) calculations. To this end, B3LYP and BHandHLYP hybrid functionals were employed to characterize intermediates, products and activation barriers. Owing to the mixing of open- and closed-shell characters of $^{1}O_{2}$ and reaction intermediates, closed-shell DFT methods led to large errors in energy calculations; on the other hand, broken-symmetry, open-shell DFT brought about spin contamination from high-spin states. To correct for spin contamination errors, an approximate spin-projection method was extended to the broken-symmetry, open shell DFT calculations for cystine with $^{1}O_{2}$.

2. Experimental and computational details

2.1. Gas-phase \(^1\text{O}_2\) experiment

Reactions of cystine ions with \(^1\text{O}_2\) were measured on a home-made guided-ion-beam tandem mass spectrometer.\(^{34}\) The apparatus consists of an electrospray ionization (ESI) ion source, a radio frequency (rf) hexapole ion guide, a quadrupole mass filter, an rf octopole ion guide surrounded by a scattering cell, a second quadrupole mass filter, and a pulse-counting electron multiplier detector.

A sample solution for protonated \([\text{CySSCy} + \text{H}]^+\) was prepared by adding 48 mg Cys (99%, Alfa Aesar) to 50 mL 0.1 M HCl, leaving it overnight for complete dissolving and then diluting to 0.004 mM with ethanol/water (3:1 vol. ratio). Solution for di-deprotonated \([\text{CySSCy} – 2\text{H}]^{2-}\) was prepared in ethanol/water (3:1) containing 0.2 mM cystine and 1.0 mM NaOH. According to cystine pK values (pK\(_1\) 1.50, pK\(_2\) 2.05, and pK\(_3\) 8.03, and pK\(_4\) 8.80),\(^{35}\) di-protonated \([\text{CySSCy} + 2\text{H}]^{2+}\) dominates at pH < 1.5, whereas deprotonated \([\text{CySSCy} – \text{H}]^-\) forms within a pH range of 7.5 – 9.3. Unfortunately, acidic solution of pH < 1.5 suppressed electrospray of cystine ions, whereas aqueous of pH 7 – 9 could not dissolve cystine. Therefore, neither of \([\text{CySSCy} + 2\text{H}]^{2+}\) and \([\text{CySSCy} – \text{H}]^-\) could be examined experimentally.

The solution of \([\text{CySSCy} + \text{H}]^+\) or \([\text{CySSCy} – 2\text{H}]^{2-}\) was sprayed into the ambient atmosphere through an electrospray needle at a rate of 0.06 mL/h. The ESI needle was held at 2.3 and -2.35 kV relative to ground for producing positively and negatively charged species, respectively. Charged droplets entered the source chamber of the mass spectrometer through the sampling aperture of a pressure-reducing desolvation capillary, which was heated to 140 °C and biased at 115 V for positive ions and -80 V for negative ones. The distance between the tip of the ESI needle and the sampling orifice of the capillary was 10 mm. Liquid aerosols underwent desolvation as they passed through the heated capillary, and were converted to gas-phase ions in the source chamber. Under mild heating conditions, not all of the solvent was evaporated, resulting in the formation of both dehydrated and monohydrated ions. Ions were transported into the hexapole ion guide at a pressure of 24 mTorr, undergoing
collisional focusing and cooled to ~310 K. Ions subsequently passed into a conventional quadrupole for selection of specific reactant ions. Reactant ions were collected into the octopole ion guide, which trapped ions in the radial direction. In addition to rf voltages, DC bias voltage was applied to the octopole ion guide with variable amplitude to determine initial kinetic energy distributions of reactant ions using retarding potential analysis. The DC bias voltage also allowed control of the kinetic energy of reactant ions in the laboratory frame \((E_{\text{Lab}}) \), thereby setting the collision energy \((E_{\text{col}}) \) between reactant ions and neutral gas molecules in the center-of-mass frame, \(i.e., E_{\text{col}} = E_{\text{Lab}} \times \frac{m_{\text{neutral}}}{m_{\text{ion}} + m_{\text{neutral}}} \), where \(m_{\text{neutral}} \) and \(m_{\text{ion}} \) are the masses of neutral and ionic reactants, respectively. The octopole passes through the scattering cell containing neutral reactant gas. The cell pressure was measured by a Baratron capacitance manometer (MKS 690 head and 670 signal conditioner). Product ions resulting from ion-molecule collisions and unreacted primary ions drifted to the end of the octopole, and were mass analyzed by the second quadrupole, and counted by the electron multiplier. Intensities of the reactant ion beam were \(5 \times 10^4 \) counts/s for \([\text{CySSCy} + \text{H}]^+\), \(1.4 \times 10^5 \) counts/s for \([\text{CySSCy} - 2\text{H}]^2-\) and \(2.4 \times 10^4 \) counts/s for \([\text{CySSCy} - 2\text{H}]^2-\cdot\text{H}_2\text{O}\). Initial kinetic energy of the ion beam was 0.8 eV for \([\text{CySSCy} + \text{H}]^+\), 1.0 eV for \([\text{CySSCy} - 2\text{H}]^2-\) and 0.8 eV for \([\text{CySSCy} - 2\text{H}]^2-\cdot\text{H}_2\text{O}\), with an energy spread of 0.6 eV that corresponded to an \(E_{\text{col}} \) resolution better than 0.1 eV.

\(^1\text{O}_2 \) was generated by the reaction of \(\text{H}_2\text{O}_2 + \text{Cl}_2 + 2\text{KOH} \rightarrow ^1\text{O}_2/3\text{O}_2 + 2\text{KCl} + 2\text{H}_2\text{O} \). 10.5 mL of 8 M KOH was added to 20 mL of 35 wt% aqueous \(\text{H}_2\text{O}_2 \) in a sparger held at -16 °C. The resulting mixture was degassed. 4.4 sccm of \(\text{Cl}_2 \) (~ 99.5%, Sigma Aldrich) was mixed with 96 sccm of He and bubbled through the \(\text{H}_2\text{O}_2/\text{KOH} \) slush. All of the \(\text{Cl}_2 \) reacted with \(\text{H}_2\text{O}_2 \) to produce a mixture of \(^1\text{O}_2, \) \(^3\text{O}_2, \) and water. Gas products passed through a -70 °C cold trap to remove water vapor. Only \(^1\text{O}_2, \) \(^3\text{O}_2 \) and He remained in the gas mixture. Before leaking into the scattering cell of the mass spectrometer for ion-molecule collisions, the concentration of \(^1\text{O}_2 \) was determined by measuring \(^1\text{O}_2 \) emission \((a^1\Delta_g \rightarrow X^3\Sigma_g^-) \) at 1270 nm in an optical emission cell. The scattering cell pressure was set at 0.25 mTorr containing 5% of \(^1\text{O}_2/3\text{O}_2 \) and 95% of He. Under these conditions, cystine ions underwent at most a
single collision with O₂. Ions also collided with He, but heavy ion-light neutral combination made these collisions insignificant at experimental E_{col}. The $^1\text{O}_2$ generator also produced $^3\text{O}_2$. To determine if reactions are $^1\text{O}_2$ specific, control experiments were performed under the same conditions using pure $^3\text{O}_2$.

2.2. Electronic structure calculations and the approximate spin projection method

Structures of reactants, intermediates, transition states (TSs) and products were optimized at the B3LYP level of theory paired with 6-31+G(d,p) and 6-311++G(d,p) basis sets using Gaussian 09. Tautomer/rotamer search was conducted for cystine ions, and the most stable conformations were used as starting structures in construction of reaction potential energy surfaces (PESs). B3LYP calculated vibrational frequencies and zero-point energies (ZPEs) were scaled by a factor of 0.952 and 0.981, respectively. All TSs were verified as first-order saddle points, and the vibrational mode associated with an imaginary frequency corresponds to the anticipated reaction pathway. Aside from the local criterion, intrinsic reaction coordinate (IRC) calculations were carried out to identify reactant and product minima connected through the identified TSs. PES scans were carried out using B3LYP and RI-MP2 with the same basis set 6-31+G(d,p). RI-MP2 calculations were completed using ORCA 4.0.0.2. Charge populations were analyzed using NBO 6.0. RRKM unimolecular rates were calculated with the program of Zhu and Hase, using direct state count algorithm.

For the reasons discussed above, closed-shell DFT and MP2 methods led to large errors in the calculations of $^1\text{O}_2$ excitation energy, and MP2 overestimated the diatomic bond length by ~ 0.1 Å. On the other hand, broken-symmetry, open-shell calculations ran into spin contamination from $^3\text{O}_2$ that adversely affects the quality of calculations, too. In our previous studies, the DFT energy of $^1\text{O}_2$ was obtained by adding the experimental excitation energy of 0.98 eV to the DFT energy of $^3\text{O}_2$. But the spin contamination problem exists not only for reactant but also in the reaction intermediate region, where the contamination from triplet states shifts the energies of stationary points and TSs. Therefore, for intermediates that were invalidated by large contributions from species other than Hartree-Fock configurations, we had utilized the multi-reference CASMP2//CASSCF method. However, application of CASSCF to the present system of sixteen heavy atoms is impractical in terms of
computational cost. Yamaguchi and co-workers developed an approximate spin projection method to remove spin contamination errors from broken-symmetry singlet states.32-33 The approach was accessed at various DFT levels (including B3LYP and BHandHLYP) using the cycloaddition of 1O$_2$ to ethylene as a test, which goes through a diradical intermediate. More recently, Schlegel and co-workers applied the same method to the 1O$_2$ oxidation of guanine,48 and obtained satisfied results. Inspired by these works, we have adopted spin-projected broken-symmetry, open-shell DFT calculations in the present study.

3. Results and discussion

3.1. Structures of protonated, deprotonated and di-deprotonated cystine

Cystine ions have numerous conformations. To find the global minima of their conformational landscape, a grid search method was applied. We rotated each of the torsion angles along molecules through 360° at 60° increments to generate trial staggered conformations for each ionization state. Every conformation so generated was subjected to optimization at B3LYP/6-31+G(d) to derive the associated local minimum conformation. Many of the initial conformations optimized to the same local minima. All local minimum conformations were re-optimized at B3LYP/6-311++G(d,p). For each ionization state, all of the conformers with relative energy within 0.2 eV are provided in the Supporting Information together with their Cartesian coordinates and energies. Each conformer has a number suffix to indicate the order of stability within its category. We have compared relative energies of conformers at a pressure of one atmosphere vs. mTorr, and found no obvious changes. Major conformers for each series are summarized in Fig. 1.

For [CySSCy + H]$^+$, a total of fourteen stable conformers/rotamers were located within 0.2 eV. They are gathered in Fig. S1, of which the two most significant, [CySSCy + H]$^+$\textsubscript{1} and 2, are depicted in the top row of Fig. 1. The two conformers represent 54 and 34% of protonated ions at 298 K, respectively. In both conformers, two amino groups interact to stabilize the proton. Seven low-energy conformers were identified for [CySSCy – H]$^-$ (Fig. S2). The first three lowest-energy conformers lie within 0.1 eV with a population of 69, 15 and 14%, respectively. Both protonated and deprotonated cystines are featured by cyclic structures via proton sharing and charge complexation between two Cys.
residues. A total of twenty three [CySSCy – 2H]^{2-} conformers lie within 0.2 eV, as summarized in Fig. S3. In contrast to cyclization of singly charged structures, [CySSCy – 2H]^{2-} is constrained to linear structures, in order to maximize the distance and thus minimize Coulomb repulsion between the two negative charges. The two lowest-energy conformers, accounting for 44 and 33% of the population, have the two carboxylate termini separated from each other more than 9 Å.

Our conformation search not only reproduced the protonated cystine conformers that were reported at the B3LYP/6-31+G(d,p) and RI-MP2 levels of theory, but found many new structures and identified new global minima. On the basis of calculated populations, [CySSCy + H]^+ _1, [CySSCy – H]^- _1 and [CySSCy – 2H]^{2-} _1 in Fig. 1 represent dominating reactant ions in gas-phase experiments, and were used as starting structures in PESs. It is certainly possible that interconversion between different conformers may occur during ion-molecule collisions. However, it seems less likely that different conformers would significantly alter reaction coordinates, as confirmed by direct dynamics trajectory simulations of protonated/deprotonated Cys with ^1O_2.23-25

3.2. Products from ion-molecule collisions

[CySSCy + H]^+ + ^1O_2. We started by first examining the reaction of [CySSCy + H]^+ (m/z 241) over the center-of-mass \(E_{\text{col}}\) range of 0.1 – 1.0 eV. Product ions were observed at m/z 120, 152, 154, 195 and 223. A representative product ion mass spectrum and formation scheme are illustrated in Fig. S4 in the Supporting Information. Product ions of m/z 120 are due to bond cleavage at the disulfide link. Its structure could be assigned to H_2NCH(CO_2H)CH_2S^+ (i.e. [Cys – H]^+, see Fig. S4), and the S-S bond rupture was preceded by an intramolecular proton transfer from the ammonium group to the disulfide bond. While m/z 120 is minor in collision-induced dissociation (CID), the same fragment is dominant in electron-induced dissociation (EID) of [CySSCy + H]^+. The m/z 152 can be attributed to cyclic [-^1H_2NCH(CO_2H)CH_2SS^-], produced by C-S cleavage via a Grob-like fragmentation process. The m/z 154 might be assigned as a protonated thiocysteine H_3N^+CH(CO_2H)CH_2SSH. Product ions of m/z 195 and 223 correspond to concomitant loss of neutral (H_2O + CO) and elimination of a single water from [CySSCy + H]^+, respectively.
All of these products were observed upon collisions of $[\text{CySSCy} + \text{H}]^+$ with ground-state O_2, too; and therefore could be excluded from $^1\text{O}_2$-specific reactions. Intensities of most product ions increased at high E_{col}, except for m/z 120 that had only a small amount and diminished at high energies. The latter does not resemble typical CID in which high collision energy would enhance fragmentation.

$[\text{CySSCy} – 2\text{H}]^{2-} + ^1\text{O}_2$ and disulfide bond cleavage. For $[\text{CySSCy} – 2\text{H}]^{2-} (m/z$ 119) + $^1\text{O}_2$, only four CID product ions were detected, as shown in Fig. 2a along with fragmentation scheme. The first three correspond to m/z 73 ($\text{H}_2\text{NCHCO}_2^-$), 110 (elimination of a water from $[\text{CySSCy} – 2\text{H}]^{2-}$) and 101 (elimination of two water molecules from reactant ion), all of which have minor intensities. The major product is an anionic radical $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^{-}$ at m/z 151. m/z 151 could also be assigned to $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SO}_2^{-}$ — a product that may form by breaking the S-S bond of an O_2 adduct $[\text{CySS(OO)Cy} – 2\text{H}]^{2-}$. To identify the structure of m/z 151, an isotopic labeling experiment was carried out using $[\text{Cy}^{32}\text{S}^{34}\text{SCy} – 2\text{H}]^{2-} (m/z$ 120) as the reactant ion. If $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SO}_2$ were produced, the product would have contained a mixture of m/z 151(containing a ^{32}S) and 153 (containing a ^{34}S) with a 1:1 intensity ratio. However, only a single ion peak was observed at m/z =153, consistent with the structure of $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2^{32}\text{S}^{34}\text{S}^{-}$.

The observation that CID of $[\text{CySSCy} – 2\text{H}]^{2-}$ is dominated by C-S cleavage is consistent with the previous report that the absence of a mobile proton facilitates disulfide bond cleavage. Identical product ions were obtained in the collisions of $[\text{CySSCy} – 2\text{H}]^{2-}$ with pure $^{3}\text{O}_2$ and Ar. We have measured the cross sections for the product ion $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^{-}$ in collisions of $[\text{CySSCy} – 2\text{H}]^{2-}$ with O_2 and Ar. Cross sections were determined from the ratios of reactant and product ion intensities at each E_{col}, the pressure of collision gas in the scattering cell, and the effective cell length. Results are plotted in Fig. 2b over the E_{col} range from 0.1 to 5 eV. The two collision systems present similar “apparent” thresholds for production of $\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^{-}$. At high E_{col} Ar produced slightly larger cross sections.

Based on PES scans and stationary point calculations at B3LYP/6-311++G(d,p), the C-S cleavage of
[CySSCy – 2H]$^{2-}$ may occur via four possible pathways:

1. $\text{[CySSCy – 2H]}^{2-} \rightarrow \text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^-(m/z 151) + \cdot\text{CH}_3\text{CH(NH}_2\text{)CO}_2^- (m/z 87) \quad \Delta H = 0.40 \text{ eV}$ (1)

2. $\rightarrow \text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^-(m/z 151) + \text{[CH}_2\text{CHNH}_2]^+ (m/z 43) + \text{CO}_2 \quad \Delta H = 0.84 \text{ eV}$ (2)

3. $\rightarrow \text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^-(m/z 151) + \text{CH}_2\text{CHNH}_2^- + \text{CO}_2^-(m/z 44) \quad \Delta H = 0.57 \text{ eV}$ (3)

4. $\rightarrow \text{[H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}]^{2-} (m/z 75.5) + \text{CH}_2\text{CHNH}_2^- + \text{CO}_2 \quad \Delta H = 1.15 \text{ eV}$ (4)

Reaction (1) produces two radical anions. Despite being the least endothermic, this reaction bears the highest activation barrier (1.84 eV), and thus is energetically less favorable than reactions (2) – (4) that are to be discussed below. The height of the reaction (4) barrier is partly attributed to the intramolecular repulsive Coulomb barrier (RCB) against charge-separated fragmentation. Here the RCB is created as a result of the superposition of short-range binding of excess charges in the dianion and long-range Coulomb repulsion between two negatively charged fragments. The open-shell dissociation PES for reaction (1) is shown in Fig. 2c, obtained by relaxed PES scan along the dissociating rC-S bond using uB3LYP/6-31+G(d,p).

Reactions (2) – (4) are governed by a single transition state TS(C-S) of 1.29 eV as shown in Fig. 2d. TS(C-S) is located at the early stage of the reactions, and its imaginary frequency corresponds to the motions of dissociating both C-S and CH-COO$^-$ bonds simultaneously, as indicated by green-colored displacement vectors. A movie of TS(C-S) along the reaction path is available in the Supporting Information. The structures of the reactant and product minima connected through TS(C-S) were verified by IRC trajectory calculation. Once crossing TS(C-S), the system forms a product-like complex. The latter may produce three sets of fragments via reactions (2) – (4) that differ only in which fragments carry charges. Their energetics are indicated by bold lines in the figure. Reaction (4) could be ruled out since no dianionic product \([\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}]^{2-}\) was detected in the experiment. The absence of this reaction is not surprising because this dissociation channel has largest endothermicity among reactions (2) – (4), so the system switches to low-energy electronic state(s) that may lead to reactions (2) and/or (3). The likelihood for reactions (2) and (3) depends on the extent of charge delocalization and
the nature of how charge states start to "unmix" as products separate. In theory, product branching between (2) and (3) could be determined by the intensities of the complementary ions \([\text{CH}_2\text{CHNH}_2]^+\) and \(\text{CO}_2^-\) that were produced concurrently with \(\text{H}_2\text{NCH(CO}_2^-\text{)CH}_2\text{SS}^-\) in reactions (2) and (3). Unfortunately, neither of the two complementary ions was present in product ion mass spectra — a not unusual phenomenon in CID of multiply charged ions.\(^{57-58}\)

Natural population analysis indicates that the charges of the \(\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}, \text{CH}_2\text{CHNH}_2\) and \(\text{CO}_2\) moieties are -1.68, -0.06, and -0.26 at TS(C-S), respectively; and the \(\text{CO}_2\) moiety has a \(\angle\text{O-C-O}\) bend angle of 154 ° which is closer to \(\text{CO}_2^-\) anion (138 °) than to neutral \(\text{CO}_2\) (180 °). The question is at what point and how the charge separation among fragments gets decided. Fig. 2d tracks the charges upon individual moieties along the IRC trajectory. The \(\text{CO}_2\) moiety starts to lose negative charge as soon as the trajectory approaches the activation barrier, and becomes neutral after the trajectory crosses over TS(C-S). This may imply that reaction (2) is favored by the system. Charges between \(\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}\) and \(\text{CH}_2\text{CHNH}_2\), on the other hand, mix together during the trajectory. Both open- and closed-shell DFT calculations converged to the same product-like complex. Within this complex, charge populations are -1.9 on \(\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}\), -0.1 on \(\text{H}_2\text{NCHCH}_2\), and none on \(\text{CO}_2\). It seems that RCB is sufficiently large to bind excess electrons within a single \(\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}\) moiety. We speculate that charge separation between \(\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}\) and \(\text{CH}_2\text{CHNH}_2\) did not occur until the final stage when products start to separate beyond equilibrium distance.

A similar late-stage charge separation scenario was reported for \(\text{H}_2\text{CO}^+ + \text{C}_2\text{H}_4 \rightarrow \text{HCO}^+ + \text{C}_2\text{H}_5\) and \(\text{HCO} + \text{C}_2\text{H}_5^+\).\(^{59}\) In this reaction, two product channels (a pair of charge states for \([\text{HCO} + \text{C}_2\text{H}_3]^+\)) share a common transition state which leads to the formation of a product-like complex. Actual atom transfer takes place in the geometry where reactants are interacting intimately, and charge separation occurs at the last step when products separate. Such late-stage charge separation was verified by the competition between the two product channels and their dependence on \(E_{\text{col}}\) and \(\text{H}_2\text{CO}^+\) vibrational modes.

The branching between reactions (2) and (3) must depend on how the energies and coupling strength
of these charge states vary with separation. It would be ideal to follow charge separation and
dissociation of the product-like complex in Fig. 2d, and locate the barrier on the PES that leads to two
separate valleys. Note that the reaction of [CySSCy – 2H]^{2-} takes place on a single potential surface up to
the product-like complex, then undergoes a transition from one electronic state to another. This
electronic state transition is evidenced by the formation of charge-separated products rather than dianionic
[H_{2}NCH(CO_{2})CH_{2}SS]^{2-}. However, the DFT method used for PES calculations is not applicable to this
non-adiabatic inter-system crossing or surface hopping, particularly when the transition between the two
charge states is abrupt. In addition, near the crossing seam a single reference wavefunction may be
inadequate for calculations. For these reasons, we did not attempt to calculate the branching between
reactions (2) and (3).

We have also calculated the symmetric S-S bond rupture process of [CySSCy – 2H]^{2-} \rightarrow 2[Cys – H]^{-} (anionic radical, m/z 119). The reaction has \Delta H of only 0.2 eV calculated at B3LYP/6-311++G(d,p), but
bears a dissociation barrier of 2.5 eV and thus is not expected to be accessible during low-energy CID.
We could not rule out the possibility of S-S cleavage at high \textit{E}_{col}. However, product ion [Cys – H]^{-} has
the same m/z as the reactant and thus could not be distinguished by mass spectrometry.

The adiabatic electron detachment energy for [CySSCy – 2H]^{2-} was calculated to be 1.2 eV at
B3LYP/6-31+G(d,p). The unfavorable electron detachment is related to the fact the resulting anionic
radical tends to eliminate two CO_{2} moieties. Charge transfer between [CySSCy – 2H]^{2-} and ^{1}O_{2} is, on
the other hand, exothermic by 0.26 eV. Nevertheless, neither electron detachment nor charge transfer
was observed in the experiment. The inability to detect these reactions may be again due to the
existence of RCB. It follows that energy substantially higher than the electron binding energy is
required to remove an electron from [CySSCy – 2H]^{2-}.

Note that none of the aforementioned reactions are ^{1}O_{2}-specific. We had thought that the failure to
detect oxidation products of cystine ions might be because the peroxides formed in the reactions were
unstable and did not have sufficient lifetime, and in the meantime their conversions to end products were
blocked by high-energy barriers. Consequently, intermediates could only decay back to reactants via physical quenching of 1O$_2$. Such scenario indeed happened in the 1O$_2$ reactions with gas-phase Cys23,25 and Met,27 where the decay of transient hydroperoxides CySOOH and MetOOH caused fragmentation of amino acids. For those systems, we devised reaction routes by using hydrated Cys and Met as the targets for collisions with 1O$_2$. The point was to stabilize hydroperoxides via water evaporation cooling of gas-phase hydrates. This strategy was proved to be successful in capturing CySOOH and MetOOH. Following the same idea, we examined the collisions of 1O$_2$ with monohydrated [CySSC$-$H] 2-\cdotH$_2$O. Contrary to our expectation, no oxidation product was detected for hydrated reactant ions, either.

3.3. Reaction PESs

Repulsive PES for [CySSC$+$H]$^+$ + 1O$_2$. To address the origin of the non-reactivity of [CySSC$+$H] $^+$ with 1O$_2$, a 31×19 grid reaction PES was generated at B3LYP/6-31+G(d,p). The contour map is visualized in Fig. 3a along rSO (the distance between the reacting S and O atoms) and rSS (the disulfide bond length). During the PES scan, rSO and rSS varied from 4.5 to 1.5 Å and 1.9 to 2.8 Å at an interval of 0.1 and 0.05 Å, respectively. All the other bond lengths and bond angles were optimized at each point of the PES. On this PES, there is a strip of flat and shallow potential well leading from the reactants to a precursor complex located at rSO = 3.0 Å and rSS = 2.1 Å with a binding energy of only 0.04 eV. The amount of binding energy roughly matches the charge-induced-dipole potential at an ion-molecule center-of-mass distance of 4 Å.60 The fact that the potential becomes repulsive at rSO < 2.5 Å implies that either 1O$_2$ is well shielded from the positive charge of the protonated amino group, or the ion-induced dipole term is weaker than the repulsion between reactants.

We noticed that DFT was reported to be problematic in describing dimethyl persulfoxide (CH$_3$)$_2$SOO.45 The stable B3LYP structure for (CH$_3$)$_2$SOO was characterized by a long rSO distance of 2.36 Å. On the other hand, MP2 was able to locate a covalently bound (CH$_3$)$_2$SOO with rSO of 1.59 – 1.65 Å.45,61 In our PES study for [CySSC$-$H] $^+$ + 1O$_2$ and [CySSC$-$2H]2 + 1O$_2$ (vide infra), DFT was able to locate both weakly bound precursor complexes (rSO = 2.4 Å) and covalently bonded cystine
persulfoxides (rSO = 1.7 Å) as well as the transition states connecting the two structures. To further ascertain that the short-range potential surface was not artificially raised by DFT, another PES scan was completed along rSO at the RI-MP2 level of theory. The RI-MP2 method is almost equivalent to the exact MP2 in calculating \(^1\text{O}_2 \) reaction PESs, but with a higher computational efficiency. The similarities and differences between DFT and RI-MP2 PESs are illustrated by comparing the two relaxed PESs in Fig. 3b, which were calculated at the same collision orientations and using the same basis set. As shown in the figure, the RI-MP2 curve has slightly deeper well at large reactant separation. Both curves become repulsive starting at rSO = 2.5 Å, and the RI-MP2 potential rises more quickly at short range.

During ion-molecule collisions, as the distance between reactants decreases, the kinetic energy which was initially wholly translational was being converted to centrifugal energy. We have estimated the orbital angular momentum \(L \) for the collision complex at \(E_{\text{col}} = 0.1 \text{ eV} \), using
\[
L = \frac{\mu \cdot v_{\text{rel}} \cdot (\sigma_{\text{collision}} / \pi)^{1/2}},
\]
where \(\mu \) and \(v_{\text{rel}} \) are the reduced mass and relative velocity of the collision partners, respectively, and \(\sigma_{\text{collision}} \) is the ion-induced dipole capture cross section. Resulting centrifugal barrier for the calculated \(L \) reaches \(\sim0.1 \text{ eV} \) at rSO of 3 – 4 Å. Therefore, total potential, as the sum of ion-molecule potential and centrifugal barrier, becomes consistently repulsive as \(^1\text{O}_2 \) approaches [CySSCy + H]\(^+\).

\([\text{CySSCy} – \text{H}]^– \) and \([\text{CySSCy} – 2\text{H}]^{2–}\) may form persulfoxides with \(^1\text{O}_2 \). We have mapped out reaction PESs for both [CySSCy – H]– and [CySSCy – 2H]\(^{2–}\) at B3LYP/6-31+G(d,p) in Fig. 4, so that we may look at the effects of an excess negative charge on the reaction. To differentiate similar structures between singly- and di-deprotonated ones, we included the number of missing protons and negative charge in their acronyms. The two PESs share common features, so are described together. Both [CySSCy – H]– and [CySSCy – 2H]\(^{2–}\) may form precursor complexes with \(^1\text{O}_2 \) at the early stage of collisions. Their binding energies are -0.37 and -0.46 eV, respectively. Critical bond lengths are rSO = 2.49 and 2.38 Å, rOO =1.26 and 1.27 Å, and rSS = 2.08 and 2.10 Å for the singly- and di-deprotonated precursors. In contrast to the protonated precursor that bounces off the repulsive potential surface, both singly- and di-deprotonated precursors may evolve to high-energy but stable covalently bound persulfoxides. A minimum energy pathway along intrinsic reaction coordinate is projected onto each of
the two PESs. IRC trajectories feature the so-called "late-barriers" located at \([TS – H]\) and \([TS – 2H]\)\(^2\) (the movies of \([TS – H]\) and \([TS – 2H]\)\(^2\) along reaction pathways are available in the Supporting Information). The transition states resemble their products in geometries except the changes of three bond lengths, \(i.e., r_{SO} = 1.76\) vs. 1.64 Å, \(r_{SS} = 2.17\) vs. 2.21 Å, \(r_{OO} = 1.37\) vs. 1.43 Å for \([TS – H]\) and \([CySS(OO)Cy – H]\); and \(r_{SO} = 1.85\) vs. 1.68 Å, \(r_{SS} = 2.14\) vs. 2.15 Å and \(r_{OO} = 1.35\) vs. 1.40 Å for \([TS – 2H]\)\(^2\) and \([CySS(OO)Cy – 2H]\)\(^2\), respectively.

The only difference between the PESs for \([CySSCy – H]\) and \([CySSCy – 2H]\)\(^2\) concerns the long-range potential. \([CySSCy – 2H]\)\(^2\) remains attractive to \(^{1}O_2\) at large separations, and has a binding energy of 0.2 eV with \(^{1}O_2\) at \(r_{SO} = 4.5\) Å; whereas the attractive potential between \([CySSCy – H]\) and \(^{1}O_2\) decreases quickly at large SO. This difference might be attributed to two facts. First, long-range ion-induced-dipole potential (= \(-\alpha q^2/2r^4\), where \(\alpha\) denotes the molecule polarizability, \(q\) the ion charge, and \(r\) the ion-molecule separation) increases with ion charges. Secondly, at relatively large reactant separation \(^{1}O_2\) could be locked into orientations close to the -NH\(_2\) and/or -CO\(_2\)\(^-\) groups of \([CySSCy – 2H]\)\(^2\). Electrostatic binding energy at such orientations reaches up to 0.7 eV. Formation of these electrostatic complexes becomes most probable when \(^{1}O_2\) attacks the back side of the disulfide bond and the two termini of \([CySSCy – 2H]\)\(^2\). Nevertheless, trapping in these collision complexes disfavors the attack of \(^{1}O_2\) on the disulfide bond.

Reaction coordinates refined by an approximate spin projection method. Guided by the PESs in Figs. 3 and 4, we are able to establish reaction coordinates for all three systems. \(^1O_2\) reactions present multi-configurational characters and thus lead to poorly calculated stationary point energies and barrier heights using restricted DFT. Calculating energies for the present systems using multi-reference solutions, such as CASMP2,\(^{47}\) was not feasible due to large system sizes. Here approximately spin-projected open-shell, broken-symmetry B3LYP calculations were used to refine local minima and TSs. The spin contamination error was approximately removed following Yamaguchi’s methodology described by eq. (5),
\[E^{AP} = E^{BS} \frac{(S^2)^{HS}}{(S^2)^{HS} - (S^2)^{BS}} - E^{HS} \frac{(S^2)^{BS}}{(S^2)^{HS} - (S^2)^{BS}} \]

(5)

where \(E \) refers to energies with the superscripts AP, BS and HS represent the approximately spin-projected state, the broken-symmetry unrestricted singlet state, and high-spin state, respectively. Only triplet was considered in HS since the \(\langle S^2 \rangle \) after annihilation was only \(\sim 0.03 \). As a test, the spin-projected \(^1\text{O}_2 \) excitation energy was calculated to be 0.89 eV at B3LYP/6-31+G(d,p) and 1.05 eV at BHandHLYP/6-31+G(d,p), which are within \(\pm 0.09 \) eV of the experimental value. It is therefore reasonable to expect that this method would improve the description of reaction PESs. We found that, in addition to \(^1\text{O}_2 \), precursor complexes exhibit significant spin contaminations with triplet states, thus their energies were much improved by the spin projection method. Open-shell, broken-symmetry calculations of TSs and disulfide peroxydes, on the other hand, all converged to closed shells. Natural population charge analysis indicates \([\text{CySS}^{+0.85}(\text{OO})^{-0.86} - \text{H}]^-\) and \([\text{CySS}^{+0.87}(\text{OO})^{-0.80} - 2\text{H}]^2-\) at TSs, and \([\text{CySS}^{+0.85}(\text{OO})^{-0.86} - \text{H}]^-\) and \([\text{CySS}^{+0.87}(\text{OO})^{-0.97} - 2\text{H}]^2-\) at peroxydes. The zwitterionic characteristics of TSs and end products are consistent with what was found for persulfoxides in reactions of \(^1\text{O}_2\) with sulfides. \(^{13-14, 18, 61}\) It may be concluded that spin projection is required mostly for the early stage of the reactions when structures contain loosely bound \(^1\text{O}_2\). We would not expect spin contamination to cause significant issues at the late stage of the reactions when wavefunctions become stable in restricted DFT.

Both spin-projected, open-shell energies (indicated by bold lines) and restricted singlet state energies (dashed lines) are plotted in Fig. 5, where reactants are located at zero energy. To verify that the spin-projected results are not functional dependent, we calculated precursors for these systems using BHandHLYP/6-31+G(d,p) — another popular functional set for describing amino acid energies with accuracy better than MP2. \(^{64}\) The latter was able to reproduce B3LYP results.

The mechanistic importance of the low-lying precursors in Fig. 5 depends on their lifetimes, so we used RRKM theory to model their unimolecular kinetics. No barrier was expected for decay of the precursor to reactants in excess of dissociation asymptote, thus an orbiting TS \(^{65}\) was assumed. Rotational quantum number \(K \) was treated as active in evaluating rate constant \(k(E, J) \), and all \((2J + 1)K\)
levels were counted as shown by eq. (6):

$$k(E,J) = \frac{d}{h} \sum_{G=0}^{\infty} \frac{G(E - E_0 - E_r(J,K))}{\sum_{K=0}^{\infty} N(E - E(J,K))}$$

(6)

where d is the reaction path degeneracy, G is the sum of accessible states from 0 to $E - E_0 - E_r$, E_0 is the activation energy, and E_r and E_r' are the rotational energies for the reactant and the orbiting TS, respectively.

Precursors and reactants were described by B3LYP calculated frequencies, moments of inertia, and spin-projected energies. At the E_{col} regime below 0.2 eV where a complex-mediated mechanism might be important, the dissociation rate constant is $10^9 - 10^{11}$ s$^{-1}$ for the precursors at different ionization states. This corresponds to a lifetime (< ns) that was insignificant during mass spectrometric measurements (on the time scale $\sim 10^2 \mu$s). As a result, kinetic analysis predicted no chemical reactivity for cystine ions.

4. Conclusions

We present guided-ion-beam scattering mass spectrometric and theoretical study on the collisions of 1O$_2$ with protonated, deprotonated and di-deprotonated cystine. Ion-molecule scattering measurements confirmed no oxidation of cystine ions by 1O$_2$, despite the fact that alkyl disulfides are oxidizable. A series of DFT potential surfaces, with the aid of approximately spin-projected open-shell, broken-symmetry calculations, have provided rationalization for experimental results. One remarkable finding is that the collisions of protonated cystine with 1O$_2$ follow a repulsive potential surface starting from the initial approaching of reactants. Formation of short-lived, weak complexes are possible in the collisions of singly- and di-deprotonated cystine with 1O$_2$, but their conversions to stable persulfoxides (akin to the key intermediates proposed for oxidation of alkyl sulfides) are hampered by high activation barriers. We reported previously that 1O$_2$ oxidation of Cys$^{23-25}$ and Met$^{26-27}$ is mediated by hydroperoxide intermediates CySOOH and MetOOH. CySOOH and MetOOH are an analogue of (but yet more stable than) the S-hydroperoxysulfonium ylide in 1O$_2$ oxidation of organic sulfides.6,45,61 The non-reactivity of cystine may be traced back to the lack of a mobile proton that would otherwise stabilize peroxide intermediates.
via formation of hydropersulfoxides.

Disulfide bond cleavage (both C-S and S-S cleavages) of disulfide-containing peptides may open access to the previously covered backbone regions and help identify peptide primary structures. Various approaches were reported for inducing disulfide bond cleavage such as UV photodissociation, negative ion dissociation, EID, and radical-induced dissociation. The present experiment probed CID of cystine ions, including di-deprotonated cystine for the first time. In contrast to minor disulfide bond cleavage in the CID of protonated cystine, C-S cleavage dominates the CID of di-deprotonated cystine and produces unique H$_2$NCH(CO$_2$)$^-$CH$_2$SS* anionic radical fragment.

Supporting Information Available: Tautomers/rotamers of [CySSCy + H]$^+$, [CySSCy − H]$^-$ and [CySSCy − 2H]$^{2-}$, CID mass spectrum and fragmentation scheme for [CySSCy + H]$^+$, structures in Figs. 2d − 4, and movies of TS(C-S), [TS − H]$^-$ and [TS − 2H]$^{2-}$.

Acknowledgements

This work was supported by the National Science Foundation (Grants No. CHE 0954507 and 1464171). WL and YS acknowledge CUNY Doctoral Student Research Grants.

References

(38) Lafferty, W. J.; Solodov, A. M.; Lugez, C. L.; Fraser, G. T. Rotational Line Strengths and Self-Pressure-Broadening Coefficients for the 1.27 Mm, a1Δg-X3Σg+, v=0-0 Band of O2. Appl. Opt. 1998, 37, 2264-2270.

Figure Captions

Fig. 1 Low-lying tautomers/conformers of [CySSCy + H]+, [CySSCy – H]− and [CySSCy – 2H]2−. Relative energies (eV, with respect to global minima) and thermal populations (in parentheses) were evaluated at B3LYP/6-311++G(d,p) with 298 K thermal corrections.

Fig. 2 (a) Product mass spectrum for [CySSCy – 2H]2− + 1O2 obtained at E_{col} = 1.0 eV, and fragmentation scheme; (b) cross sections for product ion m/z 151 in collisions of [CySSCy – 2H]2− with oxygen and Ar; (c) open-shell C-S bond dissociation PES for [CySSCy – 2H]2− and product charge distributions, calculated at uB3LYP/6-31+G(d,p); and (d) closed-shell IRC trajectory for C-S bond cleavage of [CySSCy – 2H]2−, and changes of product charge partitions, calculated at B3LYP/6-311++G(d,p). Vibrational mode corresponding to TS(C-S) imaginary frequency is indicated by displacement vectors. A movie of TS(C-S) along reaction pathway is available in the Supporting Information.

Fig. 3 (a) 2D PES for [CySSCy + H]+ + 1O2. Numbers in contour map are potential energies calculated at B3LYP/6-31+G(d,p); and (b) Comparison of B3LYP vs. RI-MP2 calculated PESs for [CySSCy + H]+ + 1O2.

Fig. 4 2D PESs for (a) [CySSCy – H]− + 1O2 and (b) [CySSCy – 2H]2− + 1O2. Numbers in the contour maps are potential energies calculated at B3LYP/6-31+G(d,p). Dotted lines represent IRC trajectories. Movies of [TS – H] and [TS – 2H]2− along reaction pathways are available in the Supporting Information.

Fig. 5 Reaction coordinates for 1O2 with [CySSCy + H]+, [CySSCy – H]− and [CySSCy – 2H]2−, calculated at B3LYP/6-31+G(d,p). Solid lines indicate approximately spin-projected, open-shell energies, and dotted lines indicate close-shell energies. For protonated cystine, only precursor exists.
Fig. 1

<table>
<thead>
<tr>
<th>Structure</th>
<th>Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[CySSCy + H]^+_1</td>
<td>0 (54%)</td>
</tr>
<tr>
<td>[CySSCy + H]^+_2</td>
<td>0.01 (34%)</td>
</tr>
<tr>
<td>[CySSCy - H]^-_1</td>
<td>0 (69%)</td>
</tr>
<tr>
<td>[CySSCy - H]^-_2</td>
<td>0.04 (15%)</td>
</tr>
<tr>
<td>[CySSCy - H]^-_3</td>
<td>0.04 (14%)</td>
</tr>
<tr>
<td>[CySSCy - 2H]^2-_1</td>
<td>0 (44%)</td>
</tr>
<tr>
<td>[CySSCy - 2H]^2-_2</td>
<td>0.01 (33%)</td>
</tr>
</tbody>
</table>
Fig. 2

a) Mass spectrum showing fragment ions of [CySSCy - 2H]^2- at m/z 119.

b) Collision energy (eV) versus cross sections (Å²) for dissociation channels:
- [CySSCy - 2H]^2- + O₂
- [CySSCy - 2H]^2- + Ar

![Graph showing dissociation cross sections vs. collision energy](image)

Intrinsic Reaction Coordinate and Dissociation Channels:
- 1.84 eV, \([\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}^-]^2+\) + CH₂CHNH₂ + CO₂
- 1.15 eV, \([\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}^-]_2^+\) + CH₂CHNH₂ + CO₂
- 0.84 eV, \([\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}^-]_2^+\) + CH₂CHNH₂ + CO₂
- 0.57 eV, \([\text{H}_2\text{NCH(CO}_2\text{)CH}_2\text{SS}^-]_2^+\) + CH₂CHNH₂ + CO₂
Fig. 3

(a) A contour plot showing the potential energy surface for the reaction CySSCy + H[1] + 1/2O₂. The contour lines represent energy levels, with the precursor marked at -0.04 eV.

(b) A graph comparing the energy (eV) as a function of the distance rSO (Å) for two different computational potentials: B3LYP/6-31+G(d,p) and RI-MP2/6-31+G(d,p). The black line represents the B3LYP potential, and the red line represents the RI-MP2 potential.