Supporting Information

Yan Sun,ab Midas Tsai,c Wenjing Zhou,a Wenchao Lu,ab and Jianbo Liu*ab

a Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA
b Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
c Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY 11101, USA

Table of Contents

Fig. S1 Schematic of experimental setup ...S2
Cablibaryon of $[1O_2]$ in solution and Fig. S2 ...S3
Fig. S3 Stable tautomers/rotamers of neutral N^α-acetyl-lysine methyl ester ..S6
Fig. S4 Stable tautomers/rotamers of protonated N^α-acetyl-lysine methyl ester ..S8
Cartesian coordinates for the structures in Fig. S3 ..S10
Cartesian coordinates for the structures in Fig. S4 ...S22
Cartesian coordinates for the structures in Fig. 3 ...S33
Cartesian coordinates for the structures in Fig. 4 ...S42
Cartesian coordinates for the structures in Fig. 5 ...S49

*aCorresponding author. E-mail: jianbo.liu@qc.cuny.edu. Telephone: 1-718-997-3271.
Fig. S1 Schematic of experimental setup: (1) sparger; (2) cold trap; (3) emission cell; (4) optical chopper; (5) InGaAs photodetector; (6) reaction vessel; (7) mechanical pump; (8) pressure relay; (9) piston pump; (10) UV-Vis spectrometer; (11) fluorometer; (12) peristaltic pump; (13) two-position switching valve; (14) θ-ESI emitter; (15a – b) syringe pumps; and (16) tandem MS.
Calibration of $[^1\text{O}_2]$ in solution In the experiment, chemically generated $[^1\text{O}_2]$ was continuously bubbled into the reaction vessel. $[^1\text{O}_2]$ had a longer lifetime in the interior of bubbles (because of reduced encounters with water) than in bulk solution. After diffusing into the bulk water, $[^1\text{O}_2]$ could travel ~ 150 nm within a lifetime of $\sim 2 \mu$s. Therefore, $[^1\text{O}_2]$ reactions occurred both at the gas/solution interface and in the bulk solution. On the basis of the steady concentration of airborne $[^1\text{O}_2]$ (determined on the basis of its emission intensity) and the continuously bubbling of $[^1\text{O}_2]$ into the solution, quasi-steady-state $[^1\text{O}_2]_{\text{sol}}$ was assumed for the solution reaction and its amount was determined as

$$[^1\text{O}_2]_{\text{sol}} = m(I_{\text{EM}} - I_B) \quad (S1)$$

where I_{EM} is the $[^1\text{O}_2]$ emission intensity (mV) measured by the lock-in amplifier in the gas phase, $I_B (= 43$ mV) represents a threshold $[^1\text{O}_2]$ emission intensity below which all of the airborne $[^1\text{O}_2]$ quenched in the bubbles and/or during diffusion before reaching aqueous substrates as we determined in the previous experiment, and m is a scaling factor (M·mV$^{-1}$).

To validate this assumption and calibrate the value of the scaling factor m, 3-(10-(2-carboxy-ethyl)-anthracen-9-yl)-propionic acid (ADPA, Aldrich) was used as a calibration compound. ADPA is known to react with $[^1\text{O}_2]$ chemically (i.e. without physical quenching) and produces an endoperoxide via a $[4 + 2]$ cycloaddition accompanied by bleaching of the absorption band of ADPA. To take into account the physical quenching of $[^1\text{O}_2]$ by LysNH$_2$ (N^{α}-acetyl-L-lysine-methyl ester, 15 mM) in the actual reaction solution, the calibration experiment was carried out in the presence of the same LysNH$_2$ concentration in the ADPA solution. pH of the ADPA solution (0.1 mM) was maintained at 10.0 using borax/NaOH buffer. The rate law for the decay of ADPA could be described as

$$\ln \frac{A_t}{A_0} = -k_r \int[^1\text{O}_2]_{\text{sol},t} dt \quad (S2)$$

where A_t and A_0 are the ADPA peak absorption (at 378.7 nm) at different reaction times and time zero, respectively; and $[^1\text{O}_2]_{\text{sol},t}$ represents the $[^1\text{O}_2]_{\text{sol}}$ at the time instant t. The combination of Eqs (S1) and (S2) gives

$$\ln \frac{A_t}{A_0} = -k_r m \int (I_{\text{EM},t} - I_B) dt \quad (S3)$$
Figure S2a shows the absorption changes of ADPA throughout the reaction, and the plot of

$$\ln \frac{A_t}{A_0} \text{ vs. } \int (I_{EM, t} - I_B) dt$$

is depicted in Figure S2b. The observation of a linear relationship between

$$\ln \frac{A_t}{A_0} \text{ and } \int (I_{EM, t} - I_B) dt$$

has verified the pseudo first-order consumption of ADPA and the linear dependence of $[^{1}O_2]_{sol}$ on I_{EM}. Accordingly, the value of $m (8.39 \times 10^{-15} \text{ M} \cdot \text{mV}^{-1})$ was extracted from the slope of the calibration plot using the reaction rate k_r of $8.2 \times 10^7 \text{ M}^{-1} \cdot \text{s}^{-1}$ for ADPA + $^{1}O_2$.

During the experiment, emission of airborne $^{1}O_2$ was continuously monitored, and the Eq. S1 was used to determine $[^{1}O_2]_{sol}$ in the reactions.

Fig. S2 (a) UV-Vis absorption spectra of ADPA over the course of the reaction with $^{1}\text{O}_2$; and (b) the linear relationship of $\int_{t}^{t'} (I_{EM,t} - 43) dt$ against $\ln\left(\frac{A_t}{A_0}\right)$.

In($\frac{A_t}{A_0}$) = $-6.88 \times 10^{-7} \cdot \int_{t}^{t'} (I_{EM,t} - 43) dt$.
Fig. S3 Stable conformers of neutral LysNH₂ (Nα-acetyl-L-lysine-methyl ester). Relative energies (kJ/mol, including ZPE and thermal corrections at 298 K) were calculated at the SMD-ωB97XD/6-31+G(d,p) level of theory. Populations for major conformers are indicated in parenthesis.
Fig. S3 (Continued.)
Fig. S4 Stable conformers of protonated LysNH₃⁺ (protonated Nα-acetyl-L-lysine-methyl ester). Relative energies (kJ/mol, including ZPE and thermal corrections at 298 K) were calculated at the SMD-ωB97XD/6-31+G(d,p) level of theory. Populations for major conformers are indicated in parenthesis.
Fig. S4 (Continued.)
Cartesian coordinates for the structures in Fig. S3, optimized at SMD-ωB97XD/6-31+ G(d,p).

LysNH$_2$

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>H2</th>
<th>C3</th>
<th>H4</th>
<th>H5</th>
<th>C6</th>
<th>O7</th>
<th>O8</th>
<th>N9</th>
<th>H10</th>
<th>C11</th>
<th>H12</th>
<th>H13</th>
<th>C14</th>
<th>C15</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-0.472120</td>
<td>-0.351185</td>
<td>-0.516146</td>
<td>-0.742063</td>
<td>-0.358051</td>
<td>-1.577699</td>
<td>0.439716</td>
<td>-1.549790</td>
<td>-0.210453</td>
<td>0.651786</td>
<td>-1.543678</td>
<td>-1.541366</td>
<td>0.864183</td>
<td>-0.130400</td>
<td>-2.461366</td>
</tr>
<tr>
<td>Y</td>
<td>-0.351185</td>
<td>-0.516146</td>
<td>-0.742063</td>
<td>-0.358051</td>
<td>-1.577699</td>
<td>0.439716</td>
<td>-1.549790</td>
<td>-0.210453</td>
<td>0.651786</td>
<td>-1.543678</td>
<td>-1.541366</td>
<td>0.864183</td>
<td>-0.130400</td>
<td>-2.461366</td>
<td>-0.409742</td>
</tr>
<tr>
<td>Z</td>
<td>-0.516146</td>
<td>-0.742063</td>
<td>-0.358051</td>
<td>-1.577699</td>
<td>0.439716</td>
<td>-1.549790</td>
<td>-0.210453</td>
<td>0.651786</td>
<td>-1.543678</td>
<td>-1.541366</td>
<td>0.864183</td>
<td>-0.130400</td>
<td>-2.461366</td>
<td>-0.409742</td>
<td></td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>H2</th>
<th>C3</th>
<th>H4</th>
<th>H5</th>
<th>C6</th>
<th>O7</th>
<th>O8</th>
<th>N9</th>
<th>H10</th>
<th>C11</th>
<th>H12</th>
<th>H13</th>
<th>C14</th>
<th>C15</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-0.376260</td>
<td>-0.461853</td>
<td>-0.779066</td>
<td>-0.496871</td>
<td>-0.397759</td>
<td>1.866301</td>
<td>0.691357</td>
<td>-1.516200</td>
<td>-0.449510</td>
<td>0.766626</td>
<td>-1.598988</td>
<td>0.640141</td>
<td>0.524437</td>
<td>-2.480966</td>
<td>-0.810038</td>
</tr>
<tr>
<td>Y</td>
<td>-0.461853</td>
<td>-0.779066</td>
<td>-0.496871</td>
<td>-0.397759</td>
<td>1.866301</td>
<td>0.691357</td>
<td>-1.516200</td>
<td>-0.449510</td>
<td>0.766626</td>
<td>-1.598988</td>
<td>0.640141</td>
<td>0.524437</td>
<td>-2.480966</td>
<td>-0.810038</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-0.779066</td>
<td>-0.496871</td>
<td>-0.397759</td>
<td>1.866301</td>
<td>0.691357</td>
<td>-1.516200</td>
<td>-0.449510</td>
<td>0.766626</td>
<td>-1.598988</td>
<td>0.640141</td>
<td>0.524437</td>
<td>-2.480966</td>
<td>-0.810038</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>H2</th>
<th>C3</th>
<th>H4</th>
<th>H5</th>
<th>C6</th>
<th>O7</th>
<th>O8</th>
<th>N9</th>
<th>H10</th>
<th>C11</th>
<th>H12</th>
<th>H13</th>
<th>C14</th>
<th>C15</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-0.304191</td>
<td>3.217080</td>
<td>0.105486</td>
<td>3.085372</td>
<td>3.058907</td>
<td>0.267097</td>
<td>0.315097</td>
<td>3.025315</td>
<td>3.060442</td>
<td>3.013044</td>
<td>3.059080</td>
<td>3.074302</td>
<td>3.084505</td>
<td>3.109375</td>
<td>3.093532</td>
</tr>
<tr>
<td>Y</td>
<td>3.217080</td>
<td>0.105486</td>
<td>3.085372</td>
<td>3.058907</td>
<td>0.267097</td>
<td>0.315097</td>
<td>3.025315</td>
<td>3.060442</td>
<td>3.013044</td>
<td>3.059080</td>
<td>3.074302</td>
<td>3.084505</td>
<td>3.109375</td>
<td>3.093532</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>0.105486</td>
<td>3.085372</td>
<td>3.058907</td>
<td>0.267097</td>
<td>0.315097</td>
<td>3.025315</td>
<td>3.060442</td>
<td>3.013044</td>
<td>3.059080</td>
<td>3.074302</td>
<td>3.084505</td>
<td>3.109375</td>
<td>3.093532</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The coordinates are given in angstroms.
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H12</td>
<td>0.125741</td>
<td>-1.730944</td>
<td>-0.128109</td>
</tr>
<tr>
<td>H13</td>
<td>0.218722</td>
<td>-0.639121</td>
<td>-1.512885</td>
</tr>
<tr>
<td>C14</td>
<td>-0.997714</td>
<td>0.060811</td>
<td>0.119613</td>
</tr>
<tr>
<td>H15</td>
<td>-1.045593</td>
<td>-0.041911</td>
<td>1.204127</td>
</tr>
<tr>
<td>C16</td>
<td>-0.900325</td>
<td>1.539603</td>
<td>-0.207655</td>
</tr>
<tr>
<td>N17</td>
<td>-2.220914</td>
<td>-0.456076</td>
<td>-0.469459</td>
</tr>
<tr>
<td>O18</td>
<td>-1.122931</td>
<td>2.019166</td>
<td>-1.279407</td>
</tr>
<tr>
<td>O19</td>
<td>-0.371981</td>
<td>2.239775</td>
<td>0.787479</td>
</tr>
<tr>
<td>H20</td>
<td>6.066926</td>
<td>-0.961776</td>
<td>0.114047</td>
</tr>
<tr>
<td>H21</td>
<td>5.086101</td>
<td>-2.239687</td>
<td>0.307940</td>
</tr>
<tr>
<td>H22</td>
<td>-2.406625</td>
<td>-0.185997</td>
<td>-1.429808</td>
</tr>
<tr>
<td>C23</td>
<td>-0.112022</td>
<td>3.633801</td>
<td>0.534283</td>
</tr>
<tr>
<td>H24</td>
<td>0.373460</td>
<td>4.004005</td>
<td>1.434709</td>
</tr>
<tr>
<td>H25</td>
<td>0.548393</td>
<td>3.739329</td>
<td>-0.328156</td>
</tr>
<tr>
<td>H26</td>
<td>-1.051159</td>
<td>4.163299</td>
<td>0.362889</td>
</tr>
<tr>
<td>C27</td>
<td>-2.968669</td>
<td>-1.471350</td>
<td>0.009816</td>
</tr>
<tr>
<td>C28</td>
<td>-2.656369</td>
<td>-2.003345</td>
<td>1.381668</td>
</tr>
<tr>
<td>H29</td>
<td>-3.346619</td>
<td>-2.813849</td>
<td>1.610625</td>
</tr>
<tr>
<td>H30</td>
<td>-1.629204</td>
<td>-2.378740</td>
<td>1.429496</td>
</tr>
<tr>
<td>H31</td>
<td>-2.762000</td>
<td>-1.216741</td>
<td>2.134722</td>
</tr>
<tr>
<td>O32</td>
<td>-3.904869</td>
<td>-1.932390</td>
<td>-0.696848</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H31</td>
<td>-3.130652</td>
<td>-0.971337</td>
<td>2.619912</td>
</tr>
<tr>
<td>H32</td>
<td>-3.971745</td>
<td>-1.029988</td>
<td>1.041559</td>
</tr>
</tbody>
</table>

15
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-0.735490</td>
<td>0.084078</td>
<td>0.626541</td>
</tr>
<tr>
<td>H2</td>
<td>-1.134604</td>
<td>-0.030646</td>
<td>1.636653</td>
</tr>
<tr>
<td>C3</td>
<td>0.525641</td>
<td>-0.792741</td>
<td>0.496477</td>
</tr>
<tr>
<td>H4</td>
<td>1.186808</td>
<td>-0.543872</td>
<td>1.332569</td>
</tr>
<tr>
<td>H5</td>
<td>0.214452</td>
<td>-1.834752</td>
<td>0.629493</td>
</tr>
<tr>
<td>H6</td>
<td>-0.336260</td>
<td>1.547267</td>
<td>0.524960</td>
</tr>
<tr>
<td>O7</td>
<td>-0.834436</td>
<td>2.178113</td>
<td>-0.528566</td>
</tr>
<tr>
<td>O8</td>
<td>0.410327</td>
<td>2.069522</td>
<td>1.336376</td>
</tr>
<tr>
<td>N9</td>
<td>-1.775085</td>
<td>-0.265832</td>
<td>-0.325672</td>
</tr>
<tr>
<td>H10</td>
<td>-1.670270</td>
<td>0.072084</td>
<td>-1.275486</td>
</tr>
<tr>
<td>C11</td>
<td>1.254717</td>
<td>-0.625179</td>
<td>-0.836322</td>
</tr>
<tr>
<td>H12</td>
<td>0.556075</td>
<td>-0.801718</td>
<td>-1.662484</td>
</tr>
<tr>
<td>H13</td>
<td>1.596812</td>
<td>0.413049</td>
<td>-0.942077</td>
</tr>
<tr>
<td>C14</td>
<td>2.445366</td>
<td>-1.577157</td>
<td>-0.997295</td>
</tr>
<tr>
<td>H15</td>
<td>2.924319</td>
<td>-1.382199</td>
<td>-1.964355</td>
</tr>
<tr>
<td>H16</td>
<td>2.076056</td>
<td>-2.609893</td>
<td>-1.026578</td>
</tr>
<tr>
<td>H17</td>
<td>3.492852</td>
<td>-1.481938</td>
<td>0.107822</td>
</tr>
<tr>
<td>H18</td>
<td>3.056812</td>
<td>-1.833566</td>
<td>1.054375</td>
</tr>
<tr>
<td>H19</td>
<td>4.312791</td>
<td>-2.166575</td>
<td>-0.127840</td>
</tr>
<tr>
<td>N20</td>
<td>4.051164</td>
<td>-0.129091</td>
<td>0.223199</td>
</tr>
<tr>
<td>H21</td>
<td>3.320855</td>
<td>0.508514</td>
<td>0.532812</td>
</tr>
<tr>
<td>H22</td>
<td>4.750404</td>
<td>-0.125279</td>
<td>0.960530</td>
</tr>
<tr>
<td>C23</td>
<td>-0.457030</td>
<td>3.557216</td>
<td>-0.700295</td>
</tr>
<tr>
<td>H24</td>
<td>-0.776423</td>
<td>4.142420</td>
<td>0.163433</td>
</tr>
<tr>
<td>H25</td>
<td>0.623136</td>
<td>3.634228</td>
<td>-0.835044</td>
</tr>
<tr>
<td>H26</td>
<td>-0.976895</td>
<td>3.886786</td>
<td>-1.597423</td>
</tr>
<tr>
<td>C27</td>
<td>-2.712751</td>
<td>-1.221416</td>
<td>-0.156379</td>
</tr>
<tr>
<td>C28</td>
<td>-2.865716</td>
<td>-1.844317</td>
<td>1.203871</td>
</tr>
<tr>
<td>H29</td>
<td>-1.935189</td>
<td>-2.321652</td>
<td>1.523712</td>
</tr>
<tr>
<td>H30</td>
<td>-3.127443</td>
<td>-1.084691</td>
<td>1.946402</td>
</tr>
<tr>
<td>H31</td>
<td>-3.656674</td>
<td>-2.592152</td>
<td>1.161724</td>
</tr>
<tr>
<td>O32</td>
<td>-3.443585</td>
<td>-1.552697</td>
<td>-1.108984</td>
</tr>
</tbody>
</table>

16
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>5.330571</td>
<td>-0.911799</td>
<td>-0.423207</td>
</tr>
<tr>
<td>C2</td>
<td>4.180547</td>
<td>-0.261802</td>
<td>0.215541</td>
</tr>
<tr>
<td>H3</td>
<td>4.285841</td>
<td>0.819914</td>
<td>0.081882</td>
</tr>
<tr>
<td>H4</td>
<td>4.143795</td>
<td>-0.447013</td>
<td>1.299711</td>
</tr>
<tr>
<td>C5</td>
<td>2.871513</td>
<td>-0.722935</td>
<td>-0.409082</td>
</tr>
<tr>
<td>H6</td>
<td>2.798571</td>
<td>-1.816117</td>
<td>-0.327352</td>
</tr>
<tr>
<td>H7</td>
<td>2.878300</td>
<td>-0.483792</td>
<td>-1.480300</td>
</tr>
<tr>
<td>C8</td>
<td>1.650879</td>
<td>-0.086783</td>
<td>0.253360</td>
</tr>
<tr>
<td>H9</td>
<td>1.626643</td>
<td>-0.355663</td>
<td>1.317546</td>
</tr>
<tr>
<td>H10</td>
<td>1.746508</td>
<td>1.006069</td>
<td>0.206186</td>
</tr>
<tr>
<td>C11</td>
<td>0.347041</td>
<td>-0.522877</td>
<td>-0.411465</td>
</tr>
<tr>
<td>H12</td>
<td>0.298585</td>
<td>-1.616846</td>
<td>-0.458496</td>
</tr>
<tr>
<td>H13</td>
<td>0.303229</td>
<td>-0.149757</td>
<td>-1.441353</td>
</tr>
<tr>
<td>C14</td>
<td>-0.916382</td>
<td>-0.058522</td>
<td>0.333538</td>
</tr>
<tr>
<td>H15</td>
<td>-0.922041</td>
<td>-0.476845</td>
<td>1.340267</td>
</tr>
<tr>
<td>Atom</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>H31</td>
<td>3.862358</td>
<td>-2.384434</td>
<td>0.337369</td>
</tr>
<tr>
<td>O32</td>
<td>1.453715</td>
<td>0.794111</td>
<td>-1.458195</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H16</td>
<td>-2.875332</td>
<td>-2.470431</td>
<td>-0.016505</td>
</tr>
<tr>
<td>C17</td>
<td>-3.969967</td>
<td>-0.606083</td>
<td>-0.346298</td>
</tr>
<tr>
<td>H18</td>
<td>-3.686528</td>
<td>-0.640285</td>
<td>-1.408663</td>
</tr>
<tr>
<td>H19</td>
<td>-4.936799</td>
<td>-1.169445</td>
<td>-0.294238</td>
</tr>
<tr>
<td>N20</td>
<td>-4.138654</td>
<td>0.687381</td>
<td>0.210586</td>
</tr>
<tr>
<td>H21</td>
<td>-3.282705</td>
<td>1.217534</td>
<td>0.065636</td>
</tr>
<tr>
<td>H22</td>
<td>-4.856588</td>
<td>1.174548</td>
<td>-0.317969</td>
</tr>
<tr>
<td>C23</td>
<td>1.190158</td>
<td>0.923872</td>
<td>1.998764</td>
</tr>
<tr>
<td>H24</td>
<td>0.584044</td>
<td>0.021288</td>
<td>2.054082</td>
</tr>
<tr>
<td>H25</td>
<td>2.249619</td>
<td>0.683550</td>
<td>1.903541</td>
</tr>
<tr>
<td>H26</td>
<td>1.030433</td>
<td>1.522474</td>
<td>2.894260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C27</td>
<td>2.815605</td>
<td>-0.664578</td>
<td>-0.353506</td>
</tr>
<tr>
<td>C28</td>
<td>3.748025</td>
<td>-1.610104</td>
<td>0.347657</td>
</tr>
<tr>
<td>H29</td>
<td>4.408759</td>
<td>-1.029555</td>
<td>0.996413</td>
</tr>
<tr>
<td>H30</td>
<td>3.222378</td>
<td>-2.359567</td>
<td>0.941646</td>
</tr>
<tr>
<td>H31</td>
<td>4.367296</td>
<td>-2.112156</td>
<td>-0.400617</td>
</tr>
<tr>
<td>O32</td>
<td>3.234844</td>
<td>0.297629</td>
<td>-1.020399</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.507590</td>
<td>-0.04186</td>
<td>-0.839635</td>
</tr>
<tr>
<td>H2</td>
<td>0.795584</td>
<td>0.096010</td>
<td>-1.885140</td>
</tr>
<tr>
<td>C3</td>
<td>-0.896504</td>
<td>-0.670480</td>
<td>-0.838114</td>
</tr>
<tr>
<td>H4</td>
<td>-1.520634</td>
<td>-0.028444</td>
<td>-1.466841</td>
</tr>
<tr>
<td>H5</td>
<td>-0.818584</td>
<td>-1.635419</td>
<td>-1.527927</td>
</tr>
<tr>
<td>C6</td>
<td>0.447184</td>
<td>1.401866</td>
<td>-0.317456</td>
</tr>
<tr>
<td>O7</td>
<td>0.783360</td>
<td>1.780737</td>
<td>0.913347</td>
</tr>
<tr>
<td>O8</td>
<td>0.040642</td>
<td>2.273185</td>
<td>-1.072907</td>
</tr>
<tr>
<td>N9</td>
<td>1.495394</td>
<td>-0.899591</td>
<td>-0.225221</td>
</tr>
<tr>
<td>C10</td>
<td>1.190347</td>
<td>-1.637271</td>
<td>0.395153</td>
</tr>
<tr>
<td>C11</td>
<td>-1.551945</td>
<td>-0.857463</td>
<td>0.531185</td>
</tr>
<tr>
<td>H12</td>
<td>-0.933490</td>
<td>-1.507199</td>
<td>1.162185</td>
</tr>
<tr>
<td>H13</td>
<td>-1.607381</td>
<td>0.109176</td>
<td>1.049106</td>
</tr>
<tr>
<td>C14</td>
<td>-2.951372</td>
<td>-1.477376</td>
<td>0.443914</td>
</tr>
<tr>
<td>H15</td>
<td>-3.330991</td>
<td>-1.624949</td>
<td>1.461949</td>
</tr>
</tbody>
</table>
H4 -1.455691 0.950720 -1.175717
H5 -1.042764 -0.539251 -2.007274
C6 0.856830 1.422142 0.099328
O7 2.095114 1.955452 0.248243
O8 -0.025332 1.944311 0.758207
N9 1.416244 -0.852416 -0.823240
H10 1.642296 -1.290912 -1.708309
C11 -1.540540 -0.831985 0.063065
H12 -0.973805 -1.762402 0.183421
H13 -1.463901 -0.297679 1.016382
C14 -3.003567 -1.202640 -0.207239
H15 -3.359557 -1.839864 0.611226
H16 -0.007977 -1.802605 -1.127420
C17 -3.951154 -0.023057 2.104149
H18 -0.108745 -1.254880 -0.878811
H19 0.495577 -0.940356 -1.731947
O20 -3.946920 0.844914 0.827829
C21 -3.014184 1.303480 -0.905418
H22 -4.623242 1.591396 0.695407
C23 1.810788 -1.564627 0.255741
C24 1.584041 -1.203477 1.640313
H25 0.609747 -0.553009 1.737004
H26 1.681083 -1.843005 2.351979
H27 2.359906 -0.281683 1.859672
C28 3.223555 1.486174 -0.532151
H29 3.619928 0.538416 -1.82547
H30 2.962584 1.418113 -1.604328
C31 3.962428 2.273511 -0.406914
C27 0.677237 1.841492 -0.411966
O32 1.837590 1.549785 -0.767312
H1 0.254328 -0.440365 0.366794
C32 0.284600 -0.358609 0.326974
H2 -0.317238 -0.793832 1.134789
H23 -0.078593 -1.129216 -0.950510
H3 -1.138312 1.140693 0.538500
C34 -1.558910 -0.969659 -1.322999
H4 -1.771210 0.093616 -1.500095
C35 -1.694952 -1.462383 -2.289222
H5 -2.517592 -1.540868 -0.307964
H36 -2.052886 -0.260210 0.520805
H6 -3.171302 -2.318314 -0.792838
C37 -3.538539 -0.512059 0.273353
H7 -3.998426 0.053559 -0.544085
H8 -4.350120 -1.038366 0.795050
N9 -0.105923 0.960868 0.223569
H10 -1.102114 1.135817 0.400794
H11 -1.586693 -1.096472 -1.263401
H12 -1.767780 -0.309504 -1.531814
H13 -1.739316 -1.68307 -2.183801
C14 -2.617882 -1.539932 -0.203427
H15 -2.119287 -1.935498 0.691617
H16 -3.216572 -2.367994 -0.596786
C17 -3.581451 -0.344434 0.223147
H18 -4.034340 0.012172 -0.668476
H19 -4.398576 -0.876350 0.809696
N20 -2.898450 0.637327 0.967763
H21 -3.553880 1.393242 1.144390
H22 -2.631548 0.277243 1.882189
Cartesian coordinates for the structures in Fig. S4, optimized at SMD-ωB97XD/6-31+G(d,p).

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>LysNH₃⁺</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>-0.528551</td>
<td>-0.131881</td>
<td>-0.438390</td>
</tr>
<tr>
<td>C2</td>
<td>-0.769298</td>
<td>-0.207088</td>
<td>-1.503118</td>
</tr>
<tr>
<td>C3</td>
<td>0.868637</td>
<td>-0.720192</td>
<td>-0.189843</td>
</tr>
<tr>
<td>H4</td>
<td>1.117798</td>
<td>-0.570901</td>
<td>0.867532</td>
</tr>
<tr>
<td>H5</td>
<td>0.817004</td>
<td>-1.803045</td>
<td>-0.361152</td>
</tr>
<tr>
<td>C6</td>
<td>-1.560406</td>
<td>-0.954703</td>
<td>0.323262</td>
</tr>
<tr>
<td>O7</td>
<td>0.295836</td>
<td>0.679392</td>
<td>1.111814</td>
</tr>
<tr>
<td>O12</td>
<td>-0.052050</td>
<td>-0.131881</td>
<td>-0.438390</td>
</tr>
<tr>
<td>H10</td>
<td>0.204454</td>
<td>1.635981</td>
<td>0.487842</td>
</tr>
<tr>
<td>C11</td>
<td>-0.926134</td>
<td>-0.732515</td>
<td>1.463732</td>
</tr>
<tr>
<td>N9</td>
<td>-0.576943</td>
<td>1.254633</td>
<td>-0.028828</td>
</tr>
<tr>
<td>H10</td>
<td>1.621740</td>
<td>-0.240721</td>
<td>-2.145859</td>
</tr>
<tr>
<td>H13</td>
<td>2.006479</td>
<td>0.968142</td>
<td>-0.938036</td>
</tr>
</tbody>
</table>

C14 3.311435 -0.760277 -0.937569
H15 4.013774 -0.294070 -1.637388
H16 3.254842 -1.821593 -1.201804
C17 3.899473 -0.698520 0.463845
H18 3.295335 -1.235573 1.195303
H19 4.907419 -1.112260 0.477307
N20 4.009512 0.711172 0.952959
H21 4.493350 0.747809 1.852674
H22 4.531785 1.288069 0.288507
C23 -1.671383 2.015197 -0.218744
C24 -1.620727 3.426589 0.294422
H25 -0.645257 3.693749 0.704613
H26 -1.871559 4.108335 -0.521758
H27 -2.380341 3.540229 1.072927
O28 -2.678674 1.561338 -0.790465
C29 -2.904105 -2.892000 0.229768
H30 -3.813013 -2.360177 0.516428
H31 -3.127401 -3.646414 -0.521757
H32 -2.440941 -3.351559 1.104729
H33 3.088633 1.138705 1.078189

3

C1 -0.465014 -0.148443 -0.698030
H2 -0.598347 -0.003235 -1.774621
C3 0.958710 -0.653160 -0.429614
H4 1.100139 -0.740138 0.654348
H5 1.043572 -1.660734 -0.849792
C6 -1.461471 -1.232212 -0.309701
O7 -1.865695 -1.162240 0.951633
O8 -1.792200 -1.128388 -1.082540
N9 -0.701738 1.105514 -0.014570
H10 0.003693 1.456485 0.619531
C11 2.030556 0.240877 -1.054455
H12 1.808997 0.374874 -2.118654
H13 2.001288 1.243504 -0.610526
C14 3.442466 -0.340939 -0.934106
H15 4.151857 0.328155 -1.433812
H16 3.490296 -1.302831 -1.455516
C17 3.926647 -0.595320 0.485036
H18 3.301404 -1.309320 1.021568
H19 4.951731 -0.964916 0.482550
N20 3.926973 0.663072 1.294469
H21 4.353896 0.510566 2.210334
H22 4.452171 1.402737 0.820873
C23 -1.852157 1.787420 -0.162976
C24 -1.986005 3.077663 0.594398
H25 -1.065054 3.365658 1.104142
H26 -2.276706 3.865677 -0.104176
H27 -2.785536 2.970023 1.332836
O28 -2.753417 1.357631 -0.894515
C29 -2.772370 -2.187068 1.398229
H30 -2.309314 -3.169750 1.294005
H31 -2.964460 -1.966688 2.446287
<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H32</td>
<td>-3.699002</td>
<td>-2.141709</td>
<td>0.823321</td>
</tr>
<tr>
<td>H33</td>
<td>2.976519</td>
<td>1.008221</td>
<td>1.448609</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-0.721391</td>
<td>0.077438</td>
<td>0.687661</td>
</tr>
<tr>
<td>H2</td>
<td>-1.106454</td>
<td>0.007943</td>
<td>1.708246</td>
</tr>
<tr>
<td>C3</td>
<td>0.466757</td>
<td>-0.893408</td>
<td>0.554102</td>
</tr>
<tr>
<td>H4</td>
<td>1.164099</td>
<td>-0.662410</td>
<td>1.365385</td>
</tr>
<tr>
<td>H5</td>
<td>0.088329</td>
<td>-1.905461</td>
<td>0.731142</td>
</tr>
<tr>
<td>C6</td>
<td>-0.228261</td>
<td>1.504369</td>
<td>0.523048</td>
</tr>
<tr>
<td>O7</td>
<td>-0.766139</td>
<td>2.151403</td>
<td>-0.501191</td>
</tr>
<tr>
<td>O8</td>
<td>0.615301</td>
<td>1.987066</td>
<td>1.260545</td>
</tr>
<tr>
<td>N9</td>
<td>-1.813917</td>
<td>-0.235566</td>
<td>-0.211168</td>
</tr>
<tr>
<td>C10</td>
<td>-1.770777</td>
<td>0.109435</td>
<td>-1.160572</td>
</tr>
<tr>
<td>C11</td>
<td>0.462202</td>
<td>-1.081540</td>
<td>-1.599003</td>
</tr>
<tr>
<td>C12</td>
<td>1.164099</td>
<td>-0.662410</td>
<td>1.365385</td>
</tr>
<tr>
<td>H13</td>
<td>0.088329</td>
<td>-1.905461</td>
<td>0.731142</td>
</tr>
<tr>
<td>C14</td>
<td>-0.228261</td>
<td>1.504369</td>
<td>0.523048</td>
</tr>
<tr>
<td>O15</td>
<td>-0.766139</td>
<td>2.151403</td>
<td>-0.501191</td>
</tr>
<tr>
<td>O16</td>
<td>0.615301</td>
<td>1.987066</td>
<td>1.260545</td>
</tr>
<tr>
<td>N17</td>
<td>-1.813917</td>
<td>-0.235566</td>
<td>-0.211168</td>
</tr>
<tr>
<td>H18</td>
<td>-1.770777</td>
<td>0.109435</td>
<td>-1.160572</td>
</tr>
<tr>
<td>C19</td>
<td>0.462202</td>
<td>-1.081540</td>
<td>-1.599003</td>
</tr>
<tr>
<td>H20</td>
<td>1.164099</td>
<td>-0.662410</td>
<td>1.365385</td>
</tr>
<tr>
<td>H21</td>
<td>0.088329</td>
<td>-1.905461</td>
<td>0.731142</td>
</tr>
<tr>
<td>C22</td>
<td>-0.228261</td>
<td>1.504369</td>
<td>0.523048</td>
</tr>
<tr>
<td>O23</td>
<td>-0.766139</td>
<td>2.151403</td>
<td>-0.501191</td>
</tr>
<tr>
<td>O24</td>
<td>0.615301</td>
<td>1.987066</td>
<td>1.260545</td>
</tr>
<tr>
<td>C25</td>
<td>2.377702</td>
<td>-1.750428</td>
<td>-0.919810</td>
</tr>
<tr>
<td>C26</td>
<td>4.198183</td>
<td>0.197767</td>
<td>-0.815669</td>
</tr>
<tr>
<td>H29</td>
<td>2.851458</td>
<td>-1.646076</td>
<td>-1.918774</td>
</tr>
<tr>
<td>H30</td>
<td>2.058020</td>
<td>-2.792900</td>
<td>-0.818131</td>
</tr>
<tr>
<td>C27</td>
<td>3.468641</td>
<td>-1.153076</td>
<td>0.117938</td>
</tr>
<tr>
<td>H31</td>
<td>2.815418</td>
<td>-1.646076</td>
<td>-1.918774</td>
</tr>
<tr>
<td>H32</td>
<td>2.058020</td>
<td>-2.792900</td>
<td>-0.818131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>5.159214</td>
<td>-1.344776</td>
<td>-0.139848</td>
</tr>
<tr>
<td>C2</td>
<td>4.034244</td>
<td>-0.414699</td>
<td>0.177741</td>
</tr>
<tr>
<td>H3</td>
<td>4.257819</td>
<td>0.531650</td>
<td>-0.316309</td>
</tr>
<tr>
<td>H4</td>
<td>4.050082</td>
<td>-0.261967</td>
<td>1.257733</td>
</tr>
<tr>
<td>C5</td>
<td>2.710630</td>
<td>-0.993846</td>
<td>-0.288244</td>
</tr>
<tr>
<td>H6</td>
<td>2.566752</td>
<td>-1.982253</td>
<td>0.164986</td>
</tr>
<tr>
<td>H7</td>
<td>2.735694</td>
<td>-1.130753</td>
<td>-1.376156</td>
</tr>
<tr>
<td>C8</td>
<td>1.549600</td>
<td>-0.079390</td>
<td>0.098807</td>
</tr>
<tr>
<td>H9</td>
<td>1.520675</td>
<td>0.026166</td>
<td>1.190305</td>
</tr>
<tr>
<td>H10</td>
<td>1.723748</td>
<td>0.921732</td>
<td>-0.313962</td>
</tr>
<tr>
<td>C11</td>
<td>0.211441</td>
<td>-0.623217</td>
<td>-0.397883</td>
</tr>
<tr>
<td>H12</td>
<td>0.108203</td>
<td>1.675756</td>
<td>-0.113584</td>
</tr>
<tr>
<td>H13</td>
<td>0.161143</td>
<td>-0.571967</td>
<td>-1.491697</td>
</tr>
<tr>
<td>C14</td>
<td>-1.015503</td>
<td>0.108359</td>
<td>0.183333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>N1</td>
<td>-5.536254</td>
<td>-0.649856</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-4.248373</td>
<td>0.043374</td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td>-4.261032</td>
<td>0.987329</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>-4.248131</td>
<td>0.252583</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>-3.069099</td>
<td>-0.823107</td>
</tr>
<tr>
<td></td>
<td>H6</td>
<td>-3.117774</td>
<td>-1.764145</td>
</tr>
<tr>
<td></td>
<td>H7</td>
<td>-3.132570</td>
<td>-1.046654</td>
</tr>
<tr>
<td></td>
<td>C8</td>
<td>-1.745268</td>
<td>-0.124427</td>
</tr>
<tr>
<td></td>
<td>H9</td>
<td>-1.685305</td>
<td>0.095152</td>
</tr>
<tr>
<td></td>
<td>H10</td>
<td>-1.716503</td>
<td>0.836587</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>-0.769182</td>
<td>-0.233248</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>-0.766749</td>
<td>0.060511</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>0.039250</td>
<td>1.531543</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>0.092846</td>
<td>1.748308</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>0.514712</td>
<td>-2.354567</td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>-2.220851</td>
<td>-0.494389</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>-2.541993</td>
<td>-0.108684</td>
</tr>
<tr>
<td></td>
<td>N9</td>
<td>-0.167345</td>
<td>0.837038</td>
</tr>
<tr>
<td></td>
<td>H10</td>
<td>2.882900</td>
<td>0.747955</td>
</tr>
<tr>
<td></td>
<td>C11</td>
<td>1.447365</td>
<td>-1.403451</td>
</tr>
<tr>
<td></td>
<td>H12</td>
<td>1.472073</td>
<td>1.987287</td>
</tr>
<tr>
<td></td>
<td>H13</td>
<td>1.661801</td>
<td>-0.389119</td>
</tr>
<tr>
<td></td>
<td>C14</td>
<td>2.550512</td>
<td>-1.969982</td>
</tr>
<tr>
<td></td>
<td>H15</td>
<td>3.482921</td>
<td>-2.091156</td>
</tr>
<tr>
<td></td>
<td>H16</td>
<td>2.272117</td>
<td>-2.965332</td>
</tr>
<tr>
<td></td>
<td>C17</td>
<td>2.832031</td>
<td>-1.115094</td>
</tr>
<tr>
<td></td>
<td>H18</td>
<td>1.924874</td>
<td>1.860100</td>
</tr>
<tr>
<td></td>
<td>H19</td>
<td>3.520224</td>
<td>-1.618041</td>
</tr>
<tr>
<td></td>
<td>N20</td>
<td>3.483532</td>
<td>0.179357</td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td>3.693640</td>
<td>0.734917</td>
</tr>
<tr>
<td></td>
<td>H22</td>
<td>4.360045</td>
<td>0.015413</td>
</tr>
<tr>
<td></td>
<td>C23</td>
<td>0.189860</td>
<td>2.029364</td>
</tr>
<tr>
<td></td>
<td>C24</td>
<td>0.940128</td>
<td>2.953500</td>
</tr>
<tr>
<td></td>
<td>H25</td>
<td>1.093346</td>
<td>2.529600</td>
</tr>
<tr>
<td></td>
<td>H26</td>
<td>1.911145</td>
<td>3.175299</td>
</tr>
<tr>
<td></td>
<td>H27</td>
<td>0.387772</td>
<td>3.892540</td>
</tr>
<tr>
<td></td>
<td>O28</td>
<td>-0.079641</td>
<td>2.356781</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>-0.453174</td>
<td>-0.371097</td>
</tr>
<tr>
<td></td>
<td>H2</td>
<td>-0.723094</td>
<td>-0.336472</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>0.457065</td>
<td>1.578852</td>
</tr>
<tr>
<td></td>
<td>H4</td>
<td>0.652660</td>
<td>-1.625948</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>-0.118028</td>
<td>1.743729</td>
</tr>
<tr>
<td></td>
<td>C6</td>
<td>-1.726091</td>
<td>-0.538953</td>
</tr>
<tr>
<td></td>
<td>C7</td>
<td>-2.650213</td>
<td>1.198869</td>
</tr>
<tr>
<td></td>
<td>O8</td>
<td>-1.860660</td>
<td>-0.156679</td>
</tr>
<tr>
<td></td>
<td>C10</td>
<td>-0.232739</td>
<td>0.871512</td>
</tr>
<tr>
<td></td>
<td>H10</td>
<td>1.272121</td>
<td>0.836470</td>
</tr>
<tr>
<td></td>
<td>C11</td>
<td>1.727688</td>
<td>1.543381</td>
</tr>
<tr>
<td></td>
<td>H12</td>
<td>1.765502</td>
<td>-2.347202</td>
</tr>
<tr>
<td></td>
<td>H13</td>
<td>1.837078</td>
<td>-0.613992</td>
</tr>
<tr>
<td></td>
<td>C14</td>
<td>3.036403</td>
<td>-1.687007</td>
</tr>
<tr>
<td></td>
<td>H15</td>
<td>3.908228</td>
<td>-1.160679</td>
</tr>
<tr>
<td></td>
<td>C16</td>
<td>2.072399</td>
<td>-2.687141</td>
</tr>
<tr>
<td></td>
<td>H17</td>
<td>3.174121</td>
<td>-0.668839</td>
</tr>
<tr>
<td></td>
<td>H18</td>
<td>2.455041</td>
<td>-0.879659</td>
</tr>
<tr>
<td></td>
<td>H19</td>
<td>4.173165</td>
<td>-0.766895</td>
</tr>
<tr>
<td></td>
<td>C20</td>
<td>2.915825</td>
<td>0.702107</td>
</tr>
<tr>
<td></td>
<td>H21</td>
<td>3.159593</td>
<td>1.368895</td>
</tr>
<tr>
<td></td>
<td>H22</td>
<td>3.514262</td>
<td>0.910222</td>
</tr>
<tr>
<td></td>
<td>C23</td>
<td>-0.331949</td>
<td>2.033265</td>
</tr>
<tr>
<td></td>
<td>C24</td>
<td>0.361044</td>
<td>3.295346</td>
</tr>
<tr>
<td></td>
<td>H25</td>
<td>1.384496</td>
<td>3.110480</td>
</tr>
<tr>
<td></td>
<td>H26</td>
<td>0.357413</td>
<td>3.958292</td>
</tr>
<tr>
<td></td>
<td>H27</td>
<td>-0.193776</td>
<td>3.784571</td>
</tr>
<tr>
<td></td>
<td>O28</td>
<td>-1.572859</td>
<td>2.057859</td>
</tr>
<tr>
<td></td>
<td>C29</td>
<td>-3.866966</td>
<td>1.516011</td>
</tr>
<tr>
<td></td>
<td>H30</td>
<td>-4.366423</td>
<td>0.598058</td>
</tr>
<tr>
<td></td>
<td>H31</td>
<td>-4.480412</td>
<td>-2.058689</td>
</tr>
<tr>
<td></td>
<td>H32</td>
<td>-3.644162</td>
<td>-2.142983</td>
</tr>
<tr>
<td></td>
<td>H33</td>
<td>-1.932471</td>
<td>2.957890</td>
</tr>
</tbody>
</table>
C1 -0.347911 -0.505893 -0.809260
H2 -0.497666 -0.407500 -1.888146
C3 0.755075 -1.539472 -0.534465
H4 0.815479 -1.699573 -0.547023
H5 0.419903 -2.483114 -0.970850
C6 -1.658555 -1.024410 -0.234258
O7 -1.877746 -0.635414 1.012868
O8 -2.388139 -1.776144 -0.856038
N9 0.029471 0.799708 -0.268559
H10 1.002746 0.926824 0.175480
C11 2.125968 -1.131332 -1.112673
H12 2.393196 -1.813123 -1.924866
H13 2.058471 -0.139150 -1.572837
C14 3.266318 -1.132085 -0.086172
H15 4.178216 -0.783785 -0.586155
H16 3.462906 -2.15843 0.249724
C17 3.024737 -0.274570 1.155154
H18 2.263783 -0.730188 1.796906
H19 3.950465 -0.234109 1.741901
N20 2.548533 1.072192 0.797270
H21 -0.018922 -0.852137 -1.349911
H22 0.382857 -0.147749 -2.086219
H23 0.444123 -1.827108 -1.534768
C24 -0.028638 -2.227505 1.703904
C25 -0.718253 1.849656 -0.395386
C26 -0.321497 3.175072 0.137078
C27 0.654101 3.130215 0.618605
H28 3.462906 -2.15843 0.249724
C29 -0.303831 3.896997 -0.684208
H30 -1.074591 3.501894 0.859239
C31 -1.866144 1.695766 -0.105618
H32 -3.056304 -0.708808 2.652248
C33 -3.295712 -0.815757 1.105395
H34 -2.370241 2.522602 -1.059182

C1 0.416800 -0.400188 0.058242
H2 0.145718 -1.168976 0.783197
C3 -0.500438 -1.278038 -1.169822
H4 0.021373 -0.937844 -2.069848
H5 -0.394538 -2.365970 -1.121333
C6 1.691686 -0.980278 0.093269
H7 2.317053 -0.274684 1.027069
H8 2.236362 -1.804507 -0.616633
N9 -0.115473 0.719656 0.239975
H10 -1.020015 0.865754 0.789952
C11 1.981282 -0.897025 -1.271543
H12 2.065563 0.817730 -1.412785
H13 2.356694 -1.343436 -2.197013
C14 2.878122 -1.337145 -0.091770
H15 2.330566 -2.008422 0.583183
H16 3.715543 -1.925673 -0.497490
C17 3.479466 -0.193194 0.724824
H18 3.907312 0.551928 0.045260
H19 4.301689 -0.583081 1.337054
N20 2.480354 0.491491 1.567850
H21 2.909395 1.299537 2.011337
C22 -0.207778 -0.133808 2.324472
C23 3.738939 -0.469538 1.143855
H24 3.956165 -1.512270 1.381176
H25 4.230300 -0.180470 0.213067
H26 4.052202 0.181176 1.957502
C27 0.399791 1.689911 -0.443624
C28 0.079486 3.085453 -0.311487
H29 -0.435335 3.429754 -1.286659
H30 -0.880984 3.155953 0.422220
C31 0.757795 3.720861 -0.008956
O32 1.383810 1.400875 -1.263884
H33 1.731580 2.193133 -1.700568
16
<table>
<thead>
<tr>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0.348168</td>
</tr>
<tr>
<td>H2</td>
<td>-0.014686</td>
</tr>
<tr>
<td>C3</td>
<td>-0.014222</td>
</tr>
<tr>
<td>H4</td>
<td>0.500313</td>
</tr>
<tr>
<td>H5</td>
<td>0.365705</td>
</tr>
<tr>
<td>C6</td>
<td>1.834992</td>
</tr>
<tr>
<td>O7</td>
<td>2.551348</td>
</tr>
<tr>
<td>O8</td>
<td>2.301547</td>
</tr>
<tr>
<td>N9</td>
<td>-0.355146</td>
</tr>
<tr>
<td>H10</td>
<td>-1.306395</td>
</tr>
<tr>
<td>C11</td>
<td>-1.521553</td>
</tr>
<tr>
<td>H12</td>
<td>-1.877671</td>
</tr>
<tr>
<td>H13</td>
<td>-1.652756</td>
</tr>
<tr>
<td>C14</td>
<td>-2.398000</td>
</tr>
<tr>
<td>H15</td>
<td>-1.774524</td>
</tr>
<tr>
<td>H16</td>
<td>-3.007117</td>
</tr>
<tr>
<td>C17</td>
<td>-3.363707</td>
</tr>
<tr>
<td>H18</td>
<td>-3.891843</td>
</tr>
<tr>
<td>H19</td>
<td>-4.120058</td>
</tr>
<tr>
<td>N20</td>
<td>-2.683982</td>
</tr>
<tr>
<td>H21</td>
<td>-3.359974</td>
</tr>
<tr>
<td>H22</td>
<td>-2.344464</td>
</tr>
<tr>
<td>C23</td>
<td>3.963307</td>
</tr>
<tr>
<td>H24</td>
<td>4.422828</td>
</tr>
<tr>
<td>H25</td>
<td>4.126490</td>
</tr>
<tr>
<td>H26</td>
<td>4.590501</td>
</tr>
<tr>
<td>C27</td>
<td>-0.098670</td>
</tr>
<tr>
<td>C28</td>
<td>-0.963753</td>
</tr>
<tr>
<td>H29</td>
<td>-1.317713</td>
</tr>
<tr>
<td>H30</td>
<td>-1.811454</td>
</tr>
<tr>
<td>H31</td>
<td>-0.368336</td>
</tr>
<tr>
<td>O32</td>
<td>0.965113</td>
</tr>
<tr>
<td>H33</td>
<td>1.083603</td>
</tr>
</tbody>
</table>

18
<table>
<thead>
<tr>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>H2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>H4</td>
</tr>
<tr>
<td>H5</td>
</tr>
<tr>
<td>C6</td>
</tr>
<tr>
<td>H7</td>
</tr>
<tr>
<td>O8</td>
</tr>
<tr>
<td>N9</td>
</tr>
<tr>
<td>H10</td>
</tr>
<tr>
<td>C11</td>
</tr>
<tr>
<td>H12</td>
</tr>
<tr>
<td>H13</td>
</tr>
<tr>
<td>C14</td>
</tr>
<tr>
<td>H15</td>
</tr>
<tr>
<td>H16</td>
</tr>
<tr>
<td>C17</td>
</tr>
<tr>
<td>H18</td>
</tr>
<tr>
<td>H19</td>
</tr>
<tr>
<td>N20</td>
</tr>
<tr>
<td>H21</td>
</tr>
<tr>
<td>H22</td>
</tr>
<tr>
<td>C23</td>
</tr>
<tr>
<td>C24</td>
</tr>
<tr>
<td>H25</td>
</tr>
<tr>
<td>H26</td>
</tr>
<tr>
<td>H27</td>
</tr>
<tr>
<td>O28</td>
</tr>
<tr>
<td>C29</td>
</tr>
<tr>
<td>H30</td>
</tr>
<tr>
<td>C31</td>
</tr>
<tr>
<td>H32</td>
</tr>
<tr>
<td>H33</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |
| | | | | |
| 27 | O18 | 1.071470 | 1.364769 | 1.506222 |
| | O19 | 0.444767 | 2.051595 | -0.543669 |
| | H20 | -6.349410 | -0.459123 | -0.069368 |
| | H21 | -5.568267 | -1.799514 | -0.542070 |
| | H22 | 1.701889 | -1.661452 | 1.032194 |
| | C23 | 0.292233 | 3.399843 | -0.056055 |
| | H24 | -0.035334 | 3.979150 | -0.916490 |
| | H25 | -0.461431 | 3.423443 | 0.732752 |
| | H26 | 1.247920 | 3.772677 | 0.315532 |
| | C27 | 3.129294 | -1.054635 | -0.186999 |
| | C28 | 4.160728 | -1.919369 | 0.430305 |
| | H29 | 4.628168 | -2.518543 | -0.354619 |
| | H30 | 4.928001 | -1.275445 | 0.868912 |
| | H31 | 3.738811 | -2.568267 | 1.190561 |
| | O32 | 3.552616 | -0.310707 | -1.168518 |
| | H33 | 2.892048 | 0.271856 | -1.575060 |</p>
<table>
<thead>
<tr>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>-5.28497</td>
<td>-5.628497</td>
</tr>
<tr>
<td>C2</td>
<td>-4.383963</td>
<td>-4.347817</td>
</tr>
<tr>
<td>H3</td>
<td>-3.439628</td>
<td>-3.56750</td>
</tr>
<tr>
<td>H4</td>
<td>-3.436750</td>
<td>-2.168888</td>
</tr>
<tr>
<td>C5</td>
<td>-3.167642</td>
<td>-0.862737</td>
</tr>
<tr>
<td>H6</td>
<td>-3.232538</td>
<td>-1.830310</td>
</tr>
<tr>
<td>H7</td>
<td>-3.172820</td>
<td>-1.072606</td>
</tr>
<tr>
<td>C8</td>
<td>-1.861735</td>
<td>-0.168088</td>
</tr>
<tr>
<td>H9</td>
<td>-1.844052</td>
<td>0.026831</td>
</tr>
<tr>
<td>H10</td>
<td>-1.813900</td>
<td>0.805363</td>
</tr>
<tr>
<td>C11</td>
<td>-0.646995</td>
<td>-1.012138</td>
</tr>
<tr>
<td>H12</td>
<td>-0.733763</td>
<td>2.006963</td>
</tr>
<tr>
<td>H13</td>
<td>-0.606959</td>
<td>-1.141619</td>
</tr>
<tr>
<td>C14</td>
<td>0.683950</td>
<td>-0.414555</td>
</tr>
<tr>
<td>H15</td>
<td>0.720518</td>
<td>-0.354833</td>
</tr>
<tr>
<td>C16</td>
<td>0.940971</td>
<td>0.953238</td>
</tr>
<tr>
<td>N17</td>
<td>1.790237</td>
<td>-1.313727</td>
</tr>
<tr>
<td>O18</td>
<td>1.462601</td>
<td>1.103460</td>
</tr>
<tr>
<td>O19</td>
<td>0.501566</td>
<td>1.926314</td>
</tr>
<tr>
<td>H20</td>
<td>-6.423103</td>
<td>-0.131609</td>
</tr>
<tr>
<td>H21</td>
<td>-5.717544</td>
<td>-1.558497</td>
</tr>
<tr>
<td>H22</td>
<td>1.784904</td>
<td>-1.405498</td>
</tr>
<tr>
<td>C23</td>
<td>0.611203</td>
<td>3.266477</td>
</tr>
<tr>
<td>H24</td>
<td>0.199999</td>
<td>3.910510</td>
</tr>
<tr>
<td>H25</td>
<td>0.031273</td>
<td>3.352530</td>
</tr>
<tr>
<td>H26</td>
<td>1.659655</td>
<td>3.505569</td>
</tr>
<tr>
<td>C27</td>
<td>3.187116</td>
<td>-0.906215</td>
</tr>
<tr>
<td>C28</td>
<td>4.245059</td>
<td>-1.695863</td>
</tr>
<tr>
<td>H29</td>
<td>5.217713</td>
<td>-1.424532</td>
</tr>
<tr>
<td>H30</td>
<td>4.227306</td>
<td>-1.483366</td>
</tr>
<tr>
<td>H31</td>
<td>4.055635</td>
<td>-2.764225</td>
</tr>
<tr>
<td>O32</td>
<td>3.279552</td>
<td>-0.017911</td>
</tr>
<tr>
<td>H33</td>
<td>1.619523</td>
<td>-2.261879</td>
</tr>
<tr>
<td>N1</td>
<td>-5.581102</td>
<td>-0.709845</td>
</tr>
<tr>
<td>C2</td>
<td>-4.321067</td>
<td>-0.038466</td>
</tr>
<tr>
<td>H3</td>
<td>-4.329918</td>
<td>0.956359</td>
</tr>
<tr>
<td>H4</td>
<td>-4.204842</td>
<td>0.111102</td>
</tr>
<tr>
<td>C5</td>
<td>-3.124281</td>
<td>-0.822885</td>
</tr>
<tr>
<td>H6</td>
<td>-3.147855</td>
<td>-1.836388</td>
</tr>
<tr>
<td>H7</td>
<td>-3.204655</td>
<td>-0.928475</td>
</tr>
<tr>
<td>C8</td>
<td>-1.796979</td>
<td>-0.155749</td>
</tr>
<tr>
<td>H9</td>
<td>-1.701991</td>
<td>-0.027480</td>
</tr>
<tr>
<td>C27</td>
<td>-2.875769</td>
<td>-1.399737</td>
</tr>
<tr>
<td>C28</td>
<td>-4.012280</td>
<td>2.027130</td>
</tr>
<tr>
<td>H29</td>
<td>-3.890954</td>
<td>-2.009392</td>
</tr>
<tr>
<td>H30</td>
<td>-4.939116</td>
<td>-1.659805</td>
</tr>
<tr>
<td>H31</td>
<td>-4.056309</td>
<td>-1.020756</td>
</tr>
<tr>
<td>O32</td>
<td>-2.822184</td>
<td>-2.119424</td>
</tr>
<tr>
<td>H33</td>
<td>-2.076742</td>
<td>-1.940666</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>N1</td>
<td>5.091456</td>
<td>-1.504503</td>
</tr>
<tr>
<td>C2</td>
<td>4.037100</td>
<td>-0.560126</td>
</tr>
<tr>
<td>H3</td>
<td>4.238661</td>
<td>0.396290</td>
</tr>
<tr>
<td>C4</td>
<td>4.028575</td>
<td>-0.363805</td>
</tr>
<tr>
<td>C5</td>
<td>2.663452</td>
<td>-0.864581</td>
</tr>
<tr>
<td>H6</td>
<td>2.487857</td>
<td>0.168304</td>
</tr>
<tr>
<td>H7</td>
<td>2.643484</td>
<td>-1.26245</td>
</tr>
<tr>
<td>C8</td>
<td>1.548368</td>
<td>-0.107184</td>
</tr>
<tr>
<td>H9</td>
<td>1.532222</td>
<td>0.012966</td>
</tr>
<tr>
<td>H10</td>
<td>1.743432</td>
<td>0.882158</td>
</tr>
<tr>
<td>C11</td>
<td>1.177255</td>
<td>-0.608472</td>
</tr>
<tr>
<td>H12</td>
<td>0.039470</td>
<td>-1.642326</td>
</tr>
<tr>
<td>H13</td>
<td>1.112251</td>
<td>0.601019</td>
</tr>
<tr>
<td>C14</td>
<td>-0.983440</td>
<td>0.220531</td>
</tr>
<tr>
<td>H15</td>
<td>-1.024098</td>
<td>0.158522</td>
</tr>
<tr>
<td>C16</td>
<td>-0.897002</td>
<td>1.674694</td>
</tr>
<tr>
<td>N17</td>
<td>-2.279406</td>
<td>-0.318226</td>
</tr>
<tr>
<td>O18</td>
<td>5.991643</td>
<td>1.132189</td>
</tr>
<tr>
<td>O19</td>
<td>4.966015</td>
<td>-2.366761</td>
</tr>
<tr>
<td>H20</td>
<td>-2.240611</td>
<td>-0.398065</td>
</tr>
<tr>
<td>C21</td>
<td>-0.014663</td>
<td>3.786841</td>
</tr>
<tr>
<td>H22</td>
<td>0.535175</td>
<td>4.202837</td>
</tr>
<tr>
<td>H23</td>
<td>0.579551</td>
<td>3.840423</td>
</tr>
<tr>
<td>H24</td>
<td>-0.966281</td>
<td>4.303946</td>
</tr>
<tr>
<td>C27</td>
<td>-2.713040</td>
<td>-1.677295</td>
</tr>
<tr>
<td>C28</td>
<td>-3.548927</td>
<td>-2.454976</td>
</tr>
<tr>
<td>H29</td>
<td>-2.941964</td>
<td>-2.747477</td>
</tr>
<tr>
<td>C30</td>
<td>-3.912450</td>
<td>-3.336961</td>
</tr>
<tr>
<td>C31</td>
<td>-4.383186</td>
<td>-1.850614</td>
</tr>
<tr>
<td>O32</td>
<td>-2.362576</td>
<td>-1.884353</td>
</tr>
<tr>
<td>H33</td>
<td>-3.046858</td>
<td>0.340902</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>5.324875</td>
<td>-0.714881</td>
<td>-0.508014</td>
</tr>
<tr>
<td>C2</td>
<td>4.188804</td>
<td>-0.073144</td>
<td>0.163734</td>
</tr>
<tr>
<td>H3</td>
<td>4.261399</td>
<td>1.006568</td>
<td>-0.003575</td>
</tr>
<tr>
<td>H4</td>
<td>4.204212</td>
<td>-0.229760</td>
<td>1.252791</td>
</tr>
<tr>
<td>C5</td>
<td>2.865141</td>
<td>-0.583102</td>
<td>-0.388339</td>
</tr>
<tr>
<td>H6</td>
<td>2.816711</td>
<td>-1.672847</td>
<td>-0.259139</td>
</tr>
<tr>
<td>H7</td>
<td>2.821120</td>
<td>-0.385707</td>
<td>-1.466825</td>
</tr>
<tr>
<td>C8</td>
<td>1.663788</td>
<td>0.062233</td>
<td>0.299654</td>
</tr>
<tr>
<td>H9</td>
<td>1.695529</td>
<td>-0.147562</td>
<td>1.375923</td>
</tr>
<tr>
<td>H10</td>
<td>1.726282</td>
<td>1.150465</td>
<td>0.183023</td>
</tr>
<tr>
<td>C11</td>
<td>0.346038</td>
<td>-0.449926</td>
<td>-0.278326</td>
</tr>
<tr>
<td>H12</td>
<td>0.332426</td>
<td>-1.544329</td>
<td>-0.229727</td>
</tr>
<tr>
<td>H13</td>
<td>0.253975</td>
<td>-0.163892</td>
<td>-1.332663</td>
</tr>
<tr>
<td>C14</td>
<td>-0.884781</td>
<td>0.060337</td>
<td>0.481812</td>
</tr>
<tr>
<td>H15</td>
<td>-0.860081</td>
<td>-0.250817</td>
<td>1.526235</td>
</tr>
<tr>
<td>C16</td>
<td>-0.977884</td>
<td>1.577265</td>
<td>0.455477</td>
</tr>
<tr>
<td>N17</td>
<td>-2.120637</td>
<td>-0.535312</td>
<td>-0.124103</td>
</tr>
</tbody>
</table>
Cartesian coordinates for the structures in Fig. 3, optimized at SMD-ωB97X/6-31+G(d,p). For each TS, the vibrational mode corresponding to TS imaginary frequency is indicated by displacement vectors.

\[9\text{MG} – \text{H}^–\]

C1	-1.190857	1.319433	0.000905
C2	0.199251	0.983609	-0.002827
C3	-1.587902	-0.999143	-0.007401
C4	2.327108	0.897920	0.000700
N5	-2.055509	0.262396	-0.002194
C6	1.345055	1.768339	0.001351
N7	1.904677	-0.406387	0.001114
N8	-0.311909	-1.409633	-0.001908
C9	0.533861	-0.362272	-0.001549
N10	-2.545918	-1.990753	-0.073125
H11	-2.246048	-2.900256	0.249531
C17	2.217125	-1.989677	-0.457838
H18	2.293194	-2.04466	0.611562
H19	1.710625	-2.813242	-0.961719
H20	3.214980	-1.874000	-0.880803

\[8-\text{OO9MG} – \text{H}^–\]

C1	-1.516584	1.443926	-0.094996
C2	-0.152981	0.865988	-0.276995
C3	-2.232087	-0.768373	0.164264
C4	1.971672	0.393111	-0.614610
C5	-2.504363	0.554947	0.123795
C6	0.966138	1.451783	-0.458170
N7	1.230053	-0.872411	-0.468930
N8	-1.036179	-1.422512	-0.013874
C9	-0.039678	-0.602361	-0.236855
N10	-3.266174	-1.567613	0.406866
H11	-3.136589	-2.568215	0.439480
H12	-4.184819	-1.173890	0.547160
C17	1.866151	-2.172672	-0.415100
H18	1.933406	-2.521172	0.618958
H19	1.292360	-2.888174	-1.006799
H20	2.868611	-2.085916	-0.833643
C17 2.377352 -1.715952 -0.593757
H18 1.911113 -2.570186 -1.084900
H19 3.349173 -1.541804 -1.057548
H20 2.515844 -1.941481 0.467932

[4,8-OO-9MG – H]–
C1 -1.510809 1.323977 -0.137634
C2 -0.063284 0.991911 -0.237190
C3 -1.836162 -1.000309 0.008767
C4 2.047513 0.767659 -0.261252
N5 -2.335666 0.285966 0.007631
N6 0.960321 1.745959 -0.405071
N7 1.551336 -0.455698 -0.843824
N8 -0.582543 -1.437266 -0.067004
C9 0.352991 -0.426790 -0.038866
N10 -2.801922 -1.935133 0.101082
H11 -2.562049 -2.913850 0.097331
H12 -3.769424 -1.655580 0.091769
O13 -1.892721 2.514608 -0.194902
H14 3.027593 1.107014 -0.579582
O15 2.120535 0.490816 1.165322
O16 0.941110 -0.304781 1.383397
C17 2.420805 -1.622780 -0.673090
H18 1.962108 -2.482893 -0.161363
H19 3.371933 -1.420724 -0.168509
H20 2.611442 -1.867914 0.375702

[8-OOH9MG – H]–
C1 -1.554614 1.472626 -0.013309
C2 -0.264787 0.857423 -0.097331
C3 -2.408056 -0.716111 0.098624
C4 1.777183 0.344767 -0.256996
N5 -2.611095 0.614369 0.083307
N6 1.005590 1.395341 -0.213493
N7 -1.117859 -0.857178 -0.183186
N8 0.685282 -1.476760 0.033370
C9 -0.210808 -0.567568 -0.036029
N10 2.924721 -1.892452 0.036043
O11 1.706142 2.560876 -0.004900
O12 -3.297832 0.846931 0.044754
C13 -2.321911 -1.938730 0.014549
H14 -1.975969 -2.621729 -0.762123
H15 -2.194282 -2.400782 0.995726
H16 -3.374830 -1.713366 -0.149870
H17 3.836721 -1.435332 0.061188

TS3a– (water-assisted addition)
[5-OH9MOG – \(\text{H}_2\text{O} \)]

C1 1.336312 -1.208552 -0.419561
C2 0.069001 -0.799612 0.338860
C3 2.056623 1.012180 -0.108182
C4 -2.148885 -0.388403 -0.116498
C5 2.294656 -0.296769 0.510609
N6 -1.177067 -1.354580 -0.095505
N7 -1.525523 0.855230 0.016936
N8 0.739582 1.550650 -0.051173
C9 -0.175442 0.671937 0.093108
N10 3.009834 1.842676 0.138207
O11 1.429270 -2.388654 -0.834654
H12 1.098193 -0.810171 2.025155
O13 0.217189 -1.074361 1.725184
O14 -3.350961 -0.559786 -0.267157
C15 -2.181710 2.123149 -0.246039
H16 -1.927998 2.835667 0.539665
H17 -1.871773 2.521239 -1.215343
H18 -3.257968 1.956458 -0.246391
H19 -1.425738 -2.310400 0.126910
H20 3.895532 1.344966 0.047896

TS3b (water-assisted proton transfer)

C1 -0.846542 1.670544 -0.420385
C2 0.091054 0.768930 0.419469
C3 -1.863824 -2.388654 -0.834654
C4 2.326464 0.217189 -0.460393
C5 -1.218710 2.123149 -0.246391
H16 -1.927998 2.835667 0.539665
H17 -1.871773 2.521239 -1.215343
H18 -3.257968 1.956458 -0.246391
H19 -1.425738 -2.310400 0.126910
H20 3.895532 1.344966 0.047896

[5-OH9MOG – \(\text{H}_2\text{O} \)]

C1 1.244930 -1.313892 -0.352922
C2 0.001286 -0.854382 0.407806
C3 2.030232 0.845029 -0.097864
C4 -2.192511 -0.336743 -0.128016
N5 2.276832 -0.431008 -0.407069
N7 -1.946999 0.884703 0.096968
N8 0.790179 1.470443 -0.004539
C9 -0.178711 0.624380 0.118211
O11 3.064312 1.666609 0.048893
H11 2.910720 2.646081 0.236244
H12 4.006205 1.310718 -0.026828
O13 1.345455 -2.475850 -0.773502
H14 -1.606022 -2.264617 0.165405
O15 0.189728 -1.089213 1.735898
O16 -3.407004 -0.415274 -0.267313
C17 -2.087039 2.187948 -0.238639
H18 -1.847613 2.533321 -1.247131
H19 -3.166662 2.099668 -0.127516
H20 -1.708633 2.902176 0.493141

TS3c

C1 0.227571 -0.958919 -0.778596
C2 0.002686 0.445368 -0.589371
C3 -2.134550 0.486613 -0.003366
C4 -0.675098 -0.981575 0.912019
C5 2.174527 0.068033 -0.115110
N6 -1.901650 -0.493429 0.925753
N7 -1.177718 1.072219 -0.714002
O8 -0.113240 1.748546 1.682865
N9 1.183847 1.043837 -0.222134
N10 -3.402542 0.902050 -0.131543
H11 -4.108632 0.543149 0.491989
H12 -3.612727 1.698628 -0.713572
O13 3.314660 0.258387 0.312395
N14 1.626792 -1.098026 -0.546660
S36

O15 -0.431561 -1.815400 -1.473881
H16 2.085712 -1.989007 -0.413359
C17 1.281139 2.320070 0.470686
H18 2.279819 2.728563 0.320937
H20 0.548297 3.004761 0.045623

[9MSp – H]–
C1 -0.620417 1.470337 -0.173450
C2 0.107909 0.126255 -0.205701
C3 2.246850 -0.149230 -0.349070
C4 0.759041 -0.128345 1.193836
C5 -2.188794 -0.185335 -0.303609
N6 2.068466 -0.281006 1.019016
N7 1.202185 0.064195 -1.125545
O8 0.097693 -0.173888 2.248843
N9 -0.992173 -0.797392 -0.458204
N10 3.504205 -0.216351 -0.831246
H11 4.234029 -0.561742 -0.227475
H12 3.641342 -0.290940 -1.827895
O13 -3.304428 -0.699325 -0.280922
N14 -1.950549 1.189279 -0.192005
H16 1.202185 0.064195 -1.125545
C17 -0.830036 -2.230062 -0.282222
H18 -0.834198 -2.504452 0.777806
H19 -1.638797 -2.750627 -0.795099
H20 0.117714 -2.528093 -0.732730

[5-OH9MOG – HN7]–
C1 1.194492 -1.302841 -0.416379
C2 -0.058036 -0.857750 0.349624
C3 1.993427 0.858163 -0.118923
C4 -2.168844 -0.418530 -0.121370
N5 2.220157 -0.419999 -0.466448
N6 -1.312760 -1.420198 -0.016197
N7 -1.509509 0.876562 0.051412
N8 0.773659 1.485018 0.043665
C9 -0.210262 0.637915 0.148619
N10 3.050145 1.655557 -0.004963
H11 2.926560 2.632869 0.216000
H12 3.978808 1.284418 -0.142500
O13 1.281702 -2.449595 -0.873539
H16 1.202185 0.064195 -1.125545
C17 -0.830036 -2.230062 -0.282222
H18 -0.834198 -2.504452 0.777806
H19 -1.638797 -2.750627 -0.795099
H20 0.117714 -2.528093 -0.732730

[5-OH9MOG – HN7]–·2H2O
C1 0.183671 0.130824 0.144620
C2 -1.158164 -0.572236 0.164614
C3 -2.183640 1.383917 -0.128050
C4 0.041526 1.358726 -0.766632
C5 0.510807 -2.048925 -0.128771
N6 -1.146701 2.000003 -0.718909
N7 -2.306991 0.035581 0.158338
O8 1.000093 1.759610 -1.436260
N9 -0.908645 -1.875037 0.160628
N10 -3.268687 2.105465 0.125134
H11 -3.285613 3.090446 -0.095827
H12 -4.089614 1.664041 0.513342
O13 0.966460 -3.191417 -0.291239
N14 1.131037 -0.877388 -0.198350
O15 0.424898 0.711878 1.435319
H16 0.558611 -0.012740 2.063755
O18 1.202185 0.064195 -1.125545
H17 3.429559 1.233890 0.681089
O18 3.095946 1.822459 1.386358
H19 2.160397 1.568208 1.457322
H20 3.703728 0.444233 -1.458955
O21 3.720256 -0.052957 -0.633072
H22 2.790673 -3.903531 -0.518372
C23 -1.895871 -2.934817 0.140652
H24 -2.603305 -2.791853 0.959005
H25 -2.434713 -2.942378 -0.810542
H26 -1.381013 -3.885368 0.273479

TS3d– (water-assisted addition)
C1 -0.107482 -0.348918 0.477779
C2 -0.083965 1.125414 0.140048
C3 1.251031 1.001025 -0.066238
C4 0.946172 -0.952784 -0.497597
C5 -2.197437 0.343785 0.066383
N6 -2.217819 -0.276537 -0.279847
N7 0.993156 1.810551 -0.054038
O8 0.561796 -1.049674 -1.736654
N9 -1.360995 1.519686 0.034917
N10 3.288598 1.721779 0.157537
H11 4.163751 1.280410 -0.085656
<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>N5</td>
<td>4.159069</td>
<td>-2.137423</td>
<td>0.385470</td>
</tr>
<tr>
<td>N6</td>
<td>2.298714</td>
<td>1.959196</td>
<td>0.581011</td>
</tr>
<tr>
<td>N7</td>
<td>4.277897</td>
<td>1.219995</td>
<td>-0.067135</td>
</tr>
<tr>
<td>N8</td>
<td>3.387650</td>
<td>-0.693507</td>
<td>-1.298735</td>
</tr>
<tr>
<td>C9</td>
<td>3.408718</td>
<td>0.024784</td>
<td>-0.084308</td>
</tr>
<tr>
<td>N10</td>
<td>3.921687</td>
<td>-2.911781</td>
<td>-1.861178</td>
</tr>
<tr>
<td>O11</td>
<td>4.016773</td>
<td>-0.691757</td>
<td>2.206964</td>
</tr>
<tr>
<td>O12</td>
<td>4.107707</td>
<td>3.421448</td>
<td>0.656468</td>
</tr>
<tr>
<td>C13</td>
<td>5.717988</td>
<td>1.105572</td>
<td>-0.173443</td>
</tr>
<tr>
<td>H14</td>
<td>6.164422</td>
<td>0.819668</td>
<td>0.784234</td>
</tr>
<tr>
<td>H15</td>
<td>5.949529</td>
<td>0.347946</td>
<td>-0.927788</td>
</tr>
<tr>
<td>H16</td>
<td>6.134193</td>
<td>2.059171</td>
<td>-0.499091</td>
</tr>
<tr>
<td>H17</td>
<td>4.264385</td>
<td>-3.738136</td>
<td>-1.376111</td>
</tr>
<tr>
<td>C18</td>
<td>-3.732510</td>
<td>-0.272252</td>
<td>-0.423749</td>
</tr>
<tr>
<td>H19</td>
<td>-4.126123</td>
<td>-0.625192</td>
<td>-1.381803</td>
</tr>
<tr>
<td>C20</td>
<td>-2.414970</td>
<td>-1.898654</td>
<td>-1.844882</td>
</tr>
<tr>
<td>H21</td>
<td>-2.023779</td>
<td>0.066831</td>
<td>0.832020</td>
</tr>
<tr>
<td>H22</td>
<td>-2.635480</td>
<td>-2.057072</td>
<td>0.037878</td>
</tr>
<tr>
<td>C23</td>
<td>-4.756986</td>
<td>-0.620878</td>
<td>0.649113</td>
</tr>
<tr>
<td>O24</td>
<td>-5.391501</td>
<td>-1.752404</td>
<td>0.357729</td>
</tr>
<tr>
<td>O25</td>
<td>-4.946996</td>
<td>0.019796</td>
<td>1.667608</td>
</tr>
<tr>
<td>N26</td>
<td>-3.522495</td>
<td>1.157676</td>
<td>-0.485896</td>
</tr>
<tr>
<td>C28</td>
<td>-1.385515</td>
<td>-0.840961</td>
<td>-1.238333</td>
</tr>
<tr>
<td>H29</td>
<td>-1.836896</td>
<td>-1.181331</td>
<td>-2.179697</td>
</tr>
<tr>
<td>H30</td>
<td>-1.124823</td>
<td>0.206692</td>
<td>-1.377573</td>
</tr>
<tr>
<td>H31</td>
<td>-0.112024</td>
<td>-1.664412</td>
<td>-1.001961</td>
</tr>
<tr>
<td>H32</td>
<td>0.571301</td>
<td>-1.525094</td>
<td>-1.844882</td>
</tr>
<tr>
<td>H33</td>
<td>0.359404</td>
<td>-2.731389</td>
<td>-0.960278</td>
</tr>
<tr>
<td>C34</td>
<td>0.630827</td>
<td>-1.343805</td>
<td>0.291089</td>
</tr>
<tr>
<td>H35</td>
<td>0.036171</td>
<td>-1.617203</td>
<td>1.165697</td>
</tr>
<tr>
<td>H36</td>
<td>1.557736</td>
<td>-1.910590</td>
<td>0.344161</td>
</tr>
<tr>
<td>N37</td>
<td>0.934274</td>
<td>0.084587</td>
<td>0.444708</td>
</tr>
<tr>
<td>H38</td>
<td>0.149385</td>
<td>0.679894</td>
<td>0.698497</td>
</tr>
<tr>
<td>C39</td>
<td>-4.504783</td>
<td>2.007734</td>
<td>-0.838145</td>
</tr>
<tr>
<td>C40</td>
<td>-3.732510</td>
<td>1.157676</td>
<td>-0.485896</td>
</tr>
<tr>
<td>H41</td>
<td>-3.129053</td>
<td>3.672882</td>
<td>-0.602749</td>
</tr>
<tr>
<td>H42</td>
<td>-4.449390</td>
<td>3.912618</td>
<td>-1.777486</td>
</tr>
<tr>
<td>H43</td>
<td>-4.797117</td>
<td>3.950848</td>
<td>-0.044791</td>
</tr>
<tr>
<td>O44</td>
<td>-5.609330</td>
<td>1.590577</td>
<td>-1.163288</td>
</tr>
<tr>
<td>H45</td>
<td>-3.325625</td>
<td>-2.448578</td>
<td>1.335736</td>
</tr>
<tr>
<td>C46</td>
<td>-7.121281</td>
<td>-1.514533</td>
<td>1.494384</td>
</tr>
<tr>
<td>H47</td>
<td>-6.731417</td>
<td>-3.161038</td>
<td>0.912449</td>
</tr>
<tr>
<td>H48</td>
<td>-5.810509</td>
<td>-2.453762</td>
<td>2.274968</td>
</tr>
<tr>
<td>H49</td>
<td>1.601398</td>
<td>2.621874</td>
<td>0.902428</td>
</tr>
</tbody>
</table>

[5-LysNH-9MSp – HN3]−

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3.947527</td>
<td>-0.909309</td>
<td>1.019632</td>
</tr>
<tr>
<td>C2</td>
<td>2.084525</td>
<td>0.738211</td>
<td>0.407791</td>
</tr>
<tr>
<td>C3</td>
<td>3.751855</td>
<td>-1.898654</td>
<td>-0.873936</td>
</tr>
<tr>
<td>C4</td>
<td>3.549455</td>
<td>2.334207</td>
<td>0.356047</td>
</tr>
<tr>
<td>N5</td>
<td>4.173323</td>
<td>-2.084070</td>
<td>0.433709</td>
</tr>
<tr>
<td>N6</td>
<td>2.224442</td>
<td>2.028587</td>
<td>0.637169</td>
</tr>
</tbody>
</table>
Cartesian coordinates for the structures in Fig. 4, optimized at SMD-ωB97XD/6-31+G(d,p). For each TS, the vibrational mode corresponding to TS imaginary frequency is indicated by displacement vectors.

9MG

C1 -1.130432 1.366537 0.000875
C2 0.241414 0.997063 -0.001077
H3 -2.959548 0.438671 -0.004438
C4 -1.546751 -1.064071 -0.001877
C5 2.359148 0.896134 0.000086
N6 -1.963105 0.243970 0.000419
N7 1.385500 1.737349 -0.00548
N8 1.925935 -0.405795 0.000059
N9 -0.276917 -1.415763 0.000943
C10 0.562575 -0.354584 -0.000815
N11 -2.515236 -2.005900 -0.054389
H12 -2.233634 -2.954567 0.148069
H13 -3.461809 -1.753510 0.194714
O14 -1.629272 2.503642 0.003123
H15 3.414849 1.128636 0.000417
C16 2.757222 -1.598271 0.002873
H17 2.562901 -2.191816 0.897670
H18 2.558060 -2.199230 -0.885866
H19 3.801056 -1.286002 -0.001323

TS1 (open-shell)

C1 0.032083 0.872266 -0.436413
C2 0.210123 -0.544415 -0.356655
C3 -2.515236 -2.005900 -0.054389
C4 -2.233634 -2.954567 0.148069
C5 2.359148 0.896134 0.000086
N6 -2.217524 0.392359 0.001323
N7 1.185302 -1.598271 0.002873
N8 1.925935 -0.405795 0.000059
N9 -0.276917 -1.415763 0.000943
C10 0.562575 -0.354584 -0.000815
N11 -2.515236 -2.005900 -0.054389
H12 -2.233634 -2.954567 0.148069
H13 -3.461809 -1.753510 0.194714
O14 -1.629272 2.503642 0.003123
H15 3.414849 1.128636 0.000417
C16 2.757222 -1.598271 0.002873
H17 2.562901 -2.191816 0.897670
H18 2.558060 -2.199230 -0.885866
H19 3.801056 -1.286002 -0.001323

8-OO9MG

C1 -1.450682 1.480298 -0.105006
C2 -0.109610 0.871849 -0.278785
H3 2.359148 0.896134 0.000086
N6 -1.963105 0.243970 0.000419
N7 1.385500 1.773749 -0.00548
N8 1.925935 -0.405795 0.000059
N9 -0.276917 -1.415763 0.000943
C10 0.562575 -0.354584 -0.000815
N11 -2.515236 -2.005900 -0.054389
H12 -2.233634 -2.954567 0.148069
H13 -3.461809 -1.753510 0.194714
O14 -1.629272 2.503642 0.003123
H15 3.414849 1.128636 0.000417
C16 2.757222 -1.598271 0.002873
H17 2.562901 -2.191816 0.897670
H18 2.558060 -2.199230 -0.885866
H19 3.801056 -1.286002 -0.001323

TS2
O15 1.004905 0.031056 1.568665
O16 2.214075 0.590227 1.153001
H17 -3.220526 0.534122 0.153001
C18 2.348239 -1.810764 -0.532083
H19 1.857579 -2.655067 -1.015676
H20 3.325673 -1.664153 -0.991704
H21 2.469558 -2.020205 0.534684

4,8-OO-9MG
C1 -1.450621 1.372863 -0.146483
C2 -0.021560 1.003510 -0.242667
C3 -1.794619 -1.063377 0.006591
C4 2.080411 0.762232 -0.254745
N5 -2.241967 0.266714 0.006010
N6 1.000738 1.754002 -0.406261
N7 1.577940 -0.454183 -0.841210
N8 -0.547238 -1.442997 -0.065643
C9 0.388234 -0.418340 -0.027893
N10 -2.778996 -1.962504 0.088417
H11 -2.542131 -2.943254 0.108014
H12 -3.752147 -1.694265 0.074487
O13 -1.892986 2.509844 -0.197009
H14 3.064659 1.096082 -0.564116
O15 2.444529 -1.625963 -0.671972
H19 1.984814 -2.481810 -1.165635
H20 3.395726 -1.420743 -1.165009
H21 2.631643 -1.873215 0.376496

8-H-8-OOH9MG
C1 -1.532661 1.438400 -0.128479
C2 -0.169773 0.858001 -0.105411
C3 -2.239144 -0.796777 0.178684
C4 1.941119 0.377890 -0.650750
N5 -2.514236 0.568645 0.086033
N6 1.040767 1.440836 -0.222098
N7 1.145399 -0.849558 -0.183209
N8 -1.199269 -1.394798 0.030153
C9 -0.174440 -0.523245 -0.074345
N10 -3.503012 -1.529537 0.152351
H11 -3.408986 -2.520030 0.322988
H12 -4.383230 -1.092798 0.388602
O13 -1.748037 2.715827 -0.019603
H14 3.928697 1.109129 1.140014
O15 3.151264 0.396674 -0.439496
O16 3.783475 0.193007 0.848774
H17 -3.461719 0.957335 0.151233
C18 1.713405 -2.188069 -0.215897
H19 1.216325 -2.774915 -0.989096
H20 2.773851 -2.107866 -0.448737
H21 1.588098 -2.672712 0.753635

9MOGx
C1 1.366246 1.418465 -0.005306
C2 -0.042711 0.918912 -0.008393
C3 1.989472 -0.824544 0.004111
C4 -2.170404 0.527968 0.004456
N5 2.325627 0.466716 0.004816
N6 -1.149277 1.557580 0.005670
N7 -1.571514 -0.732983 -0.038393
N8 0.712490 -1.415132 -0.017134
C9 -0.232510 -0.548002 -0.023577
N10 2.962706 -1.718533 0.026361
H11 2.747519 -2.063977 0.026404
H12 3.927114 -1.414151 0.044691
O13 1.595988 2.629737 -0.009841
O14 -3.353627 0.751804 0.038051
C15 -2.276930 -2.004508 -0.008842
H16 -1.908407 -2.647631 -0.800422
H17 -2.127567 -2.846354 0.966745
H18 -3.336760 -1.807623 -0.155024

8-OOH9MG
C1 -1.491802 1.502970 -0.015551
C2 -0.224219 0.865433 -0.015411
C3 -2.374318 -0.796945 0.099522
C4 1.808994 0.351890 -0.268097
N5 -2.525697 0.568645 0.086033
N6 1.040667 1.403190 -0.222096
N7 1.145399 -0.849558 -0.183209
N8 -1.199269 -1.394798 0.030153
C9 -0.174440 -0.523245 -0.074345
N10 -3.503012 -1.529537 0.152351
H11 -3.408886 -2.520030 0.322988
H12 -4.383230 -1.092798 0.388602
O13 -1.748037 2.715827 -0.019603
H14 3.928697 1.109129 1.140014
O15 3.151264 0.396674 -0.439496
O16 3.783475 0.193007 0.848774
H17 -3.461719 0.957335 0.151233
C18 1.713405 -2.188069 -0.215897
H19 1.216325 -2.774915 -0.989096
H20 2.773851 -2.107866 -0.448737
H21 1.588098 -2.672712 0.753635
TS3a (water-assisted addition)

C1 -0.201119 0.485214 0.013710
C2 0.191336 -0.961985 -0.188853
C3 2.356128 -0.431138 -0.029932
C4 0.914898 1.201710 0.783319
C5 -1.969919 -0.770360 0.381273
N6 2.171940 0.741651 0.602550
N7 1.409703 -1.396049 -0.321933
O8 0.657871 2.209186 1.453147
N9 -1.513975 0.467269 0.544583
N10 -0.935322 -1.658461 -0.141464
N11 3.601448 -0.764119 -0.342974
H12 4.364391 -0.141926 -0.118200
H13 3.791821 -1.654354 -0.779491
O14 -1.727268 3.105064 -0.966629
H15 -2.281118 2.802511 -0.223256
H16 -1.228793 3.881457 -0.659519
O17 -0.271948 1.123797 -1.305396
H18 -1.054880 2.316892 -1.164142
H19 0.603703 1.287804 -1.690049
C21 -1.056618 -3.100907 -0.217557
H22 -2.098409 -3.347139 -0.418947
H23 -0.435140 -3.472882 -1.032819
H24 -0.745216 -3.566351 0.721458

5-OHMOG

C1 1.255012 -1.302843 -0.396633
C2 -0.010686 -0.839311 0.335534
C3 2.031697 0.859953 -0.112548
C4 -2.195484 -0.323543 -0.141278
N5 2.234934 -0.476338 -0.434032
N6 -1.269046 -1.332236 -0.129154
N7 -1.500670 0.898640 -0.015062
N8 0.788095 1.48382 -0.017885
C9 -0.184084 0.647506 0.096857
N10 3.061868 1.672130 0.050184
H11 2.910993 2.651119 0.249362
H12 4.003889 1.313695 -0.021317
O13 1.328918 -2.455591 -0.827954

TS3b

C1 0.270653 -0.949591 -0.814160
C2 0.046624 0.460192 -0.523034
C3 -2.132186 0.551633 -0.075561
C4 -0.635986 -0.994072 0.883370
C5 2.221799 0.038483 -0.110748
N6 -1.908219 -0.510103 0.788030
N7 -1.114921 1.119622 -0.676143
O8 -0.223864 -1.769438 1.712820
N9 1.225541 1.026968 -0.155206
N10 -3.379586 0.985552 -0.206863
H11 -4.143177 0.547273 0.288072
H12 -3.564205 1.790807 -0.787799
O13 3.366910 0.214420 0.282599
O14 1.650732 -1.135388 -0.557800
O15 -0.407923 -1.740119 -1.528429
H16 2.133436 -2.002575 -0.573088
H17 -2.627583 -0.805875 1.443300
C18 1.363556 2.297887 0.544172
H19 1.188085 2.165644 1.614335
H20 2.370226 2.678103 0.377266
H21 0.640651 3.001371 0.133631

9MSp

C1 -0.653471 1.478850 -0.141064
C2 0.068841 0.118736 -0.188150
C3 2.228522 -0.130786 -0.458636
C4 0.720052 -0.140238 1.197818
C5 -2.274845 -0.171388 -0.302805
N6 2.040653 -0.258330 0.921341
N7 1.14055 0.073942 -1.144713
O8 0.158171 -0.221441 2.275054
N9 -1.028853 -0.794614 -0.433889
N10 3.465519 -0.219216 -0.945047
5-OH9MOG·2H2O

C1 0.160723 0.085297 0.207981
C2 -1.278398 -0.382150 0.117614
C3 -1.932749 1.745226 -0.062772
C4 0.281525 1.381788 -0.605973
C5 0.040970 -2.176282 -0.208739
N6 -0.773965 2.211795 -0.549627
N7 -2.292650 2.117951 -0.549627
O8 1.331729 -3.341743 -0.377215
N9 -1.276693 -1.723266 0.041407
N10 -2.894271 2.609538 0.205308
H11 -2.734460 3.599867 -0.377215
H12 -3.797919 2.281840 0.157669
O13 0.347394 -3.341743 -0.377215
N14 -0.804066 -1.394956 0.571176
N15 0.481130 0.010896 1.978597
H16 -0.284410 0.010388 2.568853
H17 -0.479298 -2.351970 0.550152
N18 2.229226 -2.174605 0.041526
O19 2.369856 -1.051056 0.477095
H20 2.249987 -0.981538 1.438985
H21 1.430588 -2.307090 -1.289656
O22 1.935886 -3.020572 -0.759634
H23 1.290994 -3.641334 -0.392715
C24 -3.211354 1.050376 -0.603357
H25 -3.054557 1.200135 -1.674339
H26 -4.113383 0.462097 -0.442229
H27 -3.320240 2.016062 -0.109266

gem-9Mdiol

C1 -0.033625 -0.705369 0.466121
C2 -0.364872 0.742974 0.143876
C3 1.836811 1.178640 0.006687
C4 1.207075 -1.042137 -0.385625
C5 -2.281246 -0.436163 -0.001595
N6 2.227341 -0.508034 -0.185752
N7 0.510342 1.665094 -0.018297
N8 -1.708449 0.850359 0.028336
N9 2.739191 2.153360 0.213185
H10 3.725045 1.943954 0.182487

TS3c (water-assisted addition)
H11 2.437732 3.113543 0.266453
O12 -3.472952 -0.660140 -0.147808
N13 -1.275328 -1.345052 1.807986
H15 -1.474996 -2.304041 0.384791
O16 0.765796 -1.095039 -1.715000
H17 1.540255 -0.975715 -2.278565
H18 2.197644 -2.261283 0.757832
O19 1.704702 -2.317828 -0.071047
H20 -0.379079 -0.603832 2.388281
C21 -2.426196 2.060441 -0.333796
H22 -2.22836 2.326842 -1.373570
H23 -3.491560 1.877441 -0.202212
H24 -2.116541 2.871823 0.324948

LysNH₃⁺
N1 -5.541400 -0.702935 0.108660
C2 -4.272147 -0.003797 -0.255529
H3 -4.264558 0.940959 0.289215
H4 -4.323904 0.203849 -1.325077
C5 -3.070358 -0.863022 0.093342
H6 -3.130755 -1.812362 -0.452142
H7 -3.089524 -1.096160 1.164942
C8 -1.765931 -0.147443 -0.235732
C9 -1.765931 -0.147443 -0.235732
H9 -1.765931 -0.147443 -0.235732
H10 -1.730488 0.809763 0.280285
C11 -0.551585 -0.999242 0.109454
H12 -0.639793 -1.982122 -0.365948
H13 -0.517709 -1.160076 1.193796
C14 0.784878 -0.395462 -0.343073
H15 -0.089524 -0.961600 1.164942
C16 0.784878 -0.395462 -0.343073
H16 -0.089524 -0.961600 1.164942
H17 1.540255 -0.975715 -2.278565
H18 2.197644 -2.261283 0.757832
O19 1.704702 -2.317828 -0.071047
H20 -0.379079 -0.603832 2.388281
C21 -2.426196 2.060441 -0.333796
H22 -2.22836 2.326842 -1.373570
H23 -3.491560 1.877441 -0.202212
H24 -2.116541 2.871823 0.324948

Weak Complex of 9MOGOX with LysNH₃⁺

LysNH₃⁺
C1 -3.989202 1.160689 -0.146511
C2 -3.049945 0.107871 -0.640893

5-LysNH₂⁺-9MOG'
Cartesian coordinates for the structures in Fig. 5, optimized at SMD-oB97XD/6-31+G(d,p). For each TS, the vibrational mode corresponding to TS imaginary frequency is indicated by displacement vectors.

Fig. 5a

[5-MeNH-9MSp – H]−

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>N8</th>
<th>C9</th>
<th>N10</th>
<th>H11</th>
<th>O12</th>
<th>O13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-0.880763</td>
<td>-0.316619</td>
<td>1.183945</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.871567</td>
<td>0.944202</td>
<td>-0.138934</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-2.330311</td>
<td>0.048980</td>
<td>-0.352577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.994222</td>
<td>-0.890181</td>
<td>-0.316567</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.193626</td>
<td>-0.183336</td>
<td>1.006631</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.105675</td>
<td>0.493019</td>
<td>-0.176456</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.693339</td>
<td>-1.272588</td>
<td>-0.502612</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.358850</td>
<td>0.082168</td>
<td>-1.18453</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.177311</td>
<td>-0.150754</td>
<td>-0.202135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.579268</td>
<td>0.199577</td>
<td>-0.847013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-3.679525</td>
<td>0.555189</td>
<td>-1.78612</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.479424</td>
<td>0.351177</td>
<td>0.068649</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.955794</td>
<td>-1.671238</td>
<td>-0.301600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.251480</td>
<td>-2.642250</td>
<td>0.323404</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.297620</td>
<td>-2.951829</td>
<td>0.726972</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.777326</td>
<td>-2.727653</td>
<td>0.679074</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.876730</td>
<td>-3.306809</td>
<td>-0.920896</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4.323177</td>
<td>0.400661</td>
<td>-0.19604</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.524340</td>
<td>2.215035</td>
<td>0.039948</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.464387</td>
<td>2.428691</td>
<td>-0.058221</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.483746</td>
<td>3.304999</td>
<td>0.001456</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.934374</td>
<td>4.241401</td>
<td>0.084326</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.146539</td>
<td>3.204500</td>
<td>0.864149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.087143</td>
<td>3.325168</td>
<td>-0.910118</td>
<td></td>
</tr>
</tbody>
</table>

[TSCO – H]−

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>N8</th>
<th>C9</th>
<th>N10</th>
<th>H11</th>
<th>O12</th>
<th>O13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>-1.778221</td>
<td>0.307005</td>
<td>1.846761</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.442977</td>
<td>0.883662</td>
<td>-0.432010</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>-1.806710</td>
<td>-1.269940</td>
<td>-0.482565</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.479424</td>
<td>0.351177</td>
<td>0.068649</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.521508</td>
<td>-0.349366</td>
<td>0.027854</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.662497</td>
<td>1.386676</td>
<td>-0.344739</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.749436</td>
<td>-0.820816</td>
<td>0.244737</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.427710</td>
<td>-1.532222</td>
<td>-0.193524</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5b

5-MeNH2+–9MOG

<table>
<thead>
<tr>
<th>Atom</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>N5</th>
<th>N6</th>
<th>N7</th>
<th>N8</th>
<th>C9</th>
<th>N10</th>
<th>H11</th>
<th>O12</th>
<th>O13</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1.252159</td>
<td>0.761487</td>
<td>-0.920948</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.018346</td>
<td>0.656343</td>
<td>-0.000008</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>1.861029</td>
<td>-1.301865</td>
<td>-0.072323</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2.235301</td>
<td>0.283088</td>
<td>-0.267609</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.188023</td>
<td>-0.187689</td>
<td>-0.740373</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.217603</td>
<td>1.179056</td>
<td>-0.452175</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.650891</td>
<td>-0.935298</td>
<td>0.151376</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.570030</td>
<td>-1.744333</td>
<td>0.217462</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.313035</td>
<td>-0.813561</td>
<td>0.159246</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.820876</td>
<td>-2.136722</td>
<td>0.273760</td>
<td></td>
</tr>
</tbody>
</table>
5-MeNH₂⁺-9MOG_HT1

C1 -1.189248 -0.885776 -0.826523
C2 0.043171 -0.700416 0.054728
C3 -1.877181 1.294184 -0.000821
C4 2.255394 -0.202867 -0.319384
N5 -2.138664 0.104378 -0.629554
N6 1.280708 -1.132271 -0.538402
N7 1.608967 0.985504 0.132726
N8 -0.623106 1.693402 0.321209
C9 0.297171 0.781636 0.198052
N10 -2.872404 2.112698 0.223259
H11 -2.683980 3.017302 0.637667
O12 -1.392168 -1.847056 -1.535351
O13 3.448797 -0.300437 -0.503421
C14 2.278051 2.276040 0.213765
H15 2.138088 2.827605 -0.717802
H16 1.861679 2.834979 1.050552
H17 3.337888 2.095507 0.384236
H18 -3.825548 1.873212 -0.024145
N19 -0.164825 -1.279352 1.381415
H20 -0.860875 -0.735231 1.886985
C21 -0.566247 -2.691544 1.385723
H22 -0.596376 -3.019354 2.425440
H23 -1.549397 -2.873145 0.936255
H24 0.179503 -3.296909 0.866646
H25 -3.059751 -0.49216 -1.034709
H26 1.535128 -2.112792 -0.568754

[TSHT2 + H]⁺

C1 1.189268 0.785138 -0.901472
C2 -0.044737 0.699998 -0.013671
C3 1.760641 -1.399634 0.011395
C4 -2.261689 0.381727 -0.295627
N5 2.070453 -0.257081 -0.687125
N6 -1.283535 1.322546 -0.436907
N7 -1.684716 -0.883999 0.095721
N8 0.496543 -1.717915 0.361034
C9 -0.372267 -0.754044 0.192432
N10 2.725891 -2.248083 0.259058
H11 2.508587 -3.122880 0.720627
O12 1.430663 1.693549 -1.663260
O13 -3.463786 0.518123 -0.435823
C14 -2.428456 -2.128416 0.197016
5-MeNH₂⁺-9MOG_HT2

[TScO + H]^+

[IMG + H]^+

\[
\begin{align*}
C1 & = -1.091568 \quad 0.588426 \quad 1.450877 \\
C2 & = 0.483555 \quad 0.831160 \quad -0.462943
\end{align*}
\]