Vectors

1. a) Determine $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ given that $\mathbf{u} = -i + 2j + k$ and $\mathbf{v} = 3i - j + 2k$.

 b) What is $\mathbf{v} \times \mathbf{u}$ equal to?

 c) Find the angle between the two vectors $\mathbf{u} = -i + 2j + k$ and $\mathbf{v} = 3i - j + 2k$.

2. Show that the set of vectors is orthonormal
 $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}} \right), \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}} \right), \left(0, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right), \text{ and } \left(\frac{1}{\sqrt{3}}, 0, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right)$

3. Show that
 \[
 \frac{d}{dt} (\mathbf{u} \cdot \mathbf{v}) = \frac{du}{dt} \cdot \mathbf{v} + \mathbf{u} \cdot \frac{dv}{dt}
 \]
 and
 \[
 \frac{d}{dt} (\mathbf{u} \times \mathbf{v}) = \frac{du}{dt} \times \mathbf{v} + \mathbf{u} \times \frac{dv}{dt}
 \]
 (Hint, let $\mathbf{u} = u_x(t)i + u_y(t)j + u_z(t)k$, and $\mathbf{v} = v_x(t)i + v_y(t)j + v_z(t)k$)

4. a) Textbook (Levine’s 6th ed. Quantum Chemistry) Prob. 5.18 (a)

 b) Textbook Prob. 5.19 (a)

Angular Momentum

5. Textbook Prob. 5.29

6. Textbook Prob. 5.34

7. Prove that \hat{L}^2 commutes with \hat{L}_x, \hat{L}_y, and \hat{L}_z.

8. In the far infrared spectrum of H79Br, there is a series of lines separated by 16.72 cm$^{-1}$. Calculate the values of the moment of inertia and the internuclear separation in H79Br.

9. The following lines were observed in the microwave absorption spectrum of H127I and D127I between 60 cm$^{-1}$ and 90 cm$^{-1}$. Use the rigid-rotator approximation to determine the values of \tilde{B}, I and J for each molecule. Take the masses of H, D and 127I to be 1.008, 2.013 and 126.904 amu, respectively.

<table>
<thead>
<tr>
<th></th>
<th>\tilde{v}_{obs} / cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H127I</td>
<td>64.275 77.130 89.985</td>
</tr>
<tr>
<td>D127I</td>
<td>65.070 71.577 78.094 84.591</td>
</tr>
</tbody>
</table>